Home
Class 12
MATHS
If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2)...

If `sinx=(2t)/(1+t^2)` , `tany=(2t)/(1-t^2)` , find `(dy)/(dx)` .

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given that \(\sin x = \frac{2t}{1+t^2}\) and \(\tan y = \frac{2t}{1-t^2}\), we will follow these steps: ### Step 1: Differentiate \(\sin x\) with respect to \(t\) We start with the equation: \[ \sin x = \frac{2t}{1+t^2} \] Differentiating both sides with respect to \(t\): \[ \frac{d}{dt}(\sin x) = \frac{d}{dt}\left(\frac{2t}{1+t^2}\right) \] Using the chain rule on the left side: \[ \cos x \frac{dx}{dt} = \frac{(1+t^2)(2) - 2t(2t)}{(1+t^2)^2} \] This simplifies to: \[ \cos x \frac{dx}{dt} = \frac{2 + 2t^2 - 4t^2}{(1+t^2)^2} = \frac{2 - 2t^2}{(1+t^2)^2} \] ### Step 2: Solve for \(\frac{dx}{dt}\) Rearranging the equation gives: \[ \frac{dx}{dt} = \frac{2 - 2t^2}{(1+t^2)^2 \cos x} \] ### Step 3: Find \(\cos x\) Using the identity \(\cos^2 x + \sin^2 x = 1\): \[ \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{2t}{1+t^2}\right)^2 \] Calculating \(\sin^2 x\): \[ \sin^2 x = \frac{4t^2}{(1+t^2)^2} \] Thus, \[ \cos^2 x = 1 - \frac{4t^2}{(1+t^2)^2} = \frac{(1+t^2)^2 - 4t^2}{(1+t^2)^2} = \frac{1 + 2t^2 + t^4 - 4t^2}{(1+t^2)^2} = \frac{1 - 2t^2 + t^4}{(1+t^2)^2} \] So, \[ \cos x = \frac{\sqrt{(1 - t^2)^2}}{1+t^2} = \frac{1 - t^2}{1+t^2} \] ### Step 4: Substitute \(\cos x\) back into \(\frac{dx}{dt}\) Substituting \(\cos x\) into the equation for \(\frac{dx}{dt}\): \[ \frac{dx}{dt} = \frac{2 - 2t^2}{(1+t^2)^2 \cdot \frac{1 - t^2}{1+t^2}} = \frac{2(1+t^2)(1 - t^2)}{(1+t^2)^2(2 - 2t^2)} = \frac{2(1 - t^2)}{(1+t^2)(1 - t^2)} = \frac{2}{1+t^2} \] ### Step 5: Differentiate \(\tan y\) with respect to \(t\) Now, we differentiate: \[ \tan y = \frac{2t}{1-t^2} \] Differentiating both sides: \[ \sec^2 y \frac{dy}{dt} = \frac{(1-t^2)(2) - 2t(-2t)}{(1-t^2)^2} \] This simplifies to: \[ \sec^2 y \frac{dy}{dt} = \frac{2(1-t^2) + 4t^2}{(1-t^2)^2} = \frac{2 + 2t^2}{(1-t^2)^2} \] ### Step 6: Solve for \(\frac{dy}{dt}\) Rearranging gives: \[ \frac{dy}{dt} = \frac{2 + 2t^2}{(1-t^2)^2 \sec^2 y} \] ### Step 7: Find \(\sec^2 y\) Using the identity \(\sec^2 y = 1 + \tan^2 y\): \[ \tan^2 y = \left(\frac{2t}{1-t^2}\right)^2 = \frac{4t^2}{(1-t^2)^2} \] Thus, \[ \sec^2 y = 1 + \frac{4t^2}{(1-t^2)^2} = \frac{(1-t^2)^2 + 4t^2}{(1-t^2)^2} = \frac{1 - 2t^2 + t^4 + 4t^2}{(1-t^2)^2} = \frac{1 + 2t^2 + t^4}{(1-t^2)^2} \] ### Step 8: Substitute \(\sec^2 y\) back into \(\frac{dy}{dt}\) Substituting gives: \[ \frac{dy}{dt} = \frac{2(1+t^2)}{(1-t^2)^2} \cdot \frac{(1-t^2)^2}{1 + 2t^2 + t^4} = \frac{2(1+t^2)}{1 + 2t^2 + t^4} \] ### Step 9: Find \(\frac{dy}{dx}\) Finally, we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{2(1+t^2)}{1 + 2t^2 + t^4}}{\frac{2}{1+t^2}} = \frac{(1+t^2)(1+t^2)}{1 + 2t^2 + t^4} = \frac{(1+t^2)^2}{1 + 2t^2 + t^4} \] Since \(1 + 2t^2 + t^4 = (1+t^2)^2\), we find: \[ \frac{dy}{dx} = 1 \] ### Final Answer \[ \frac{dy}{dx} = 1 \]

To find \(\frac{dy}{dx}\) given that \(\sin x = \frac{2t}{1+t^2}\) and \(\tan y = \frac{2t}{1-t^2}\), we will follow these steps: ### Step 1: Differentiate \(\sin x\) with respect to \(t\) We start with the equation: \[ \sin x = \frac{2t}{1+t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

If x=sin^-1""(2t)/(1+t^2) and y=tan ^-1""(2t)/(1-t) " the n find " dy/dx.