Home
Class 12
MATHS
If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\...

If `x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ ` find `(dy)/(dx)` .

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(x = \frac{1 + \log t}{t^2}\) and \(y = \frac{3 + 2 \log t}{t}\), we will use the chain rule and implicit differentiation. Let's go through the steps one by one. ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{1 + \log t}{t^2} \] We will use the quotient rule to differentiate \(x\): \[ \frac{dx}{dt} = \frac{(t^2)(\frac{d}{dt}(1 + \log t)) - (1 + \log t)(\frac{d}{dt}(t^2))}{(t^2)^2} \] Calculating the derivatives: - \(\frac{d}{dt}(1 + \log t) = \frac{1}{t}\) - \(\frac{d}{dt}(t^2) = 2t\) Substituting these into the quotient rule: \[ \frac{dx}{dt} = \frac{t^2 \cdot \frac{1}{t} - (1 + \log t) \cdot 2t}{t^4} \] \[ = \frac{t - 2t(1 + \log t)}{t^4} \] \[ = \frac{t - 2t - 2t \log t}{t^4} \] \[ = \frac{-t - 2t \log t}{t^4} \] \[ = \frac{-(1 + 2 \log t)}{t^3} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{3 + 2 \log t}{t} \] Using the quotient rule again: \[ \frac{dy}{dt} = \frac{(t)(\frac{d}{dt}(3 + 2 \log t)) - (3 + 2 \log t)(\frac{d}{dt}(t))}{t^2} \] Calculating the derivatives: - \(\frac{d}{dt}(3 + 2 \log t) = \frac{2}{t}\) - \(\frac{d}{dt}(t) = 1\) Substituting these into the quotient rule: \[ \frac{dy}{dt} = \frac{t \cdot \frac{2}{t} - (3 + 2 \log t) \cdot 1}{t^2} \] \[ = \frac{2 - (3 + 2 \log t)}{t^2} \] \[ = \frac{2 - 3 - 2 \log t}{t^2} \] \[ = \frac{-1 - 2 \log t}{t^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{-1 - 2 \log t}{t^2}}{\frac{-(1 + 2 \log t)}{t^3}} \] This simplifies to: \[ = \frac{-1 - 2 \log t}{t^2} \cdot \frac{t^3}{-(1 + 2 \log t)} \] \[ = \frac{t^3}{t^2} = t \] ### Final Answer Thus, we have: \[ \frac{dy}{dx} = t \]

To find \(\frac{dy}{dx}\) when \(x = \frac{1 + \log t}{t^2}\) and \(y = \frac{3 + 2 \log t}{t}\), we will use the chain rule and implicit differentiation. Let's go through the steps one by one. ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{1 + \log t}{t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i n d"(dy)/(dx)dot

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=f(t) and y=g(t) , then find (dy)/(dx)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)