Home
Class 12
MATHS
If x=e^(cos2t) and y=e^(sin2t) , prove t...

If `x=e^(cos2t)` and `y=e^(sin2t)` , prove that `(dy)/(dx)=-(ylogx)/(xlogy)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = -\frac{y \log x}{x \log y}\) given \(x = e^{\cos 2t}\) and \(y = e^{\sin 2t}\), we will follow these steps: ### Step 1: Take the logarithm of both sides Starting with the given equations: \[ x = e^{\cos 2t} \quad \text{and} \quad y = e^{\sin 2t} \] Taking the logarithm of both sides, we have: \[ \log x = \cos 2t \quad \text{and} \quad \log y = \sin 2t \] ### Step 2: Differentiate both sides with respect to \(t\) Now, we differentiate both equations with respect to \(t\): 1. For \(\log x\): \[ \frac{d}{dt}(\log x) = \frac{1}{x} \frac{dx}{dt} = -2 \sin 2t \] Thus, we have: \[ \frac{dx}{dt} = -2x \sin 2t \] 2. For \(\log y\): \[ \frac{d}{dt}(\log y) = \frac{1}{y} \frac{dy}{dt} = 2 \cos 2t \] Thus, we have: \[ \frac{dy}{dt} = 2y \cos 2t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{2y \cos 2t}{-2x \sin 2t} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{y \cos 2t}{x \sin 2t} \] ### Step 4: Substitute back \(\cos 2t\) and \(\sin 2t\) From our earlier steps, we know: \[ \cos 2t = \log x \quad \text{and} \quad \sin 2t = \log y \] Substituting these into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{y \log x}{x \log y} \] ### Conclusion Thus, we have proved that: \[ \frac{dy}{dx} = -\frac{y \log x}{x \log y} \]

To prove that \(\frac{dy}{dx} = -\frac{y \log x}{x \log y}\) given \(x = e^{\cos 2t}\) and \(y = e^{\sin 2t}\), we will follow these steps: ### Step 1: Take the logarithm of both sides Starting with the given equations: \[ x = e^{\cos 2t} \quad \text{and} \quad y = e^{\sin 2t} \] Taking the logarithm of both sides, we have: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

If x^ydoty^x=1,p rov et h a t(dy)/(dx)=-(y(y+xlogy)/(x(ylogx+x)

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)