Home
Class 12
MATHS
If x=asin2t(1+cos2t) and y=bcos2t(1-cos2...

If `x=asin2t(1+cos2t)` and `y=bcos2t(1-cos2t)` , show that at `t=pi/4` , `(dy)/(dx)=b/a` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) when \(t = \frac{\pi}{4}\) given the equations: \[ x = a \sin(2t)(1 + \cos(2t)) \] \[ y = b \cos(2t)(1 - \cos(2t)) \] ### Step 1: Differentiate \(x\) with respect to \(t\) First, we differentiate \(x\): \[ x = a \sin(2t)(1 + \cos(2t)) \] Using the product rule, we have: \[ \frac{dx}{dt} = a \left( \frac{d}{dt}[\sin(2t)](1 + \cos(2t)) + \sin(2t) \frac{d}{dt}[1 + \cos(2t)] \right) \] Calculating the derivatives: - \(\frac{d}{dt}[\sin(2t)] = 2 \cos(2t)\) - \(\frac{d}{dt}[\cos(2t)] = -2 \sin(2t)\) Now substituting these into the equation: \[ \frac{dx}{dt} = a \left( 2 \cos(2t)(1 + \cos(2t)) + \sin(2t)(-2 \sin(2t)) \right) \] This simplifies to: \[ \frac{dx}{dt} = a \left( 2 \cos(2t) + 2 \cos^2(2t) - 2 \sin^2(2t) \right) \] Using the identity \(\cos^2(2t) - \sin^2(2t) = \cos(4t)\): \[ \frac{dx}{dt} = 2a \left( \cos(2t) + \cos(4t) \right) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = b \cos(2t)(1 - \cos(2t)) \] Using the product rule again: \[ \frac{dy}{dt} = b \left( \frac{d}{dt}[\cos(2t)](1 - \cos(2t)) + \cos(2t) \frac{d}{dt}[1 - \cos(2t)] \right) \] Calculating the derivatives: - \(\frac{d}{dt}[\cos(2t)] = -2 \sin(2t)\) - \(\frac{d}{dt}[-\cos(2t)] = 2 \sin(2t)\) Now substituting these into the equation: \[ \frac{dy}{dt} = b \left( -2 \sin(2t)(1 - \cos(2t)) + \cos(2t)(2 \sin(2t)) \right) \] This simplifies to: \[ \frac{dy}{dt} = 2b \sin(2t)(\cos(2t) - (1 - \cos(2t))) = 2b \sin(2t)(\cos(2t) - 1 + \cos(2t)) = 2b \sin(2t)(2\cos(2t) - 1) \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2b \sin(2t)(2\cos(2t) - 1)}{2a(\cos(2t) + \cos(4t))} \] This simplifies to: \[ \frac{dy}{dx} = \frac{b \sin(2t)(2\cos(2t) - 1)}{a(\cos(2t) + \cos(4t))} \] ### Step 4: Evaluate at \(t = \frac{\pi}{4}\) Substituting \(t = \frac{\pi}{4}\): - \(\sin(2t) = \sin(\frac{\pi}{2}) = 1\) - \(\cos(2t) = \cos(\frac{\pi}{2}) = 0\) - \(\cos(4t) = \cos(\pi) = -1\) Now substituting these values into \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{b \cdot 1 \cdot (2 \cdot 0 - 1)}{a(0 - 1)} = \frac{b \cdot (-1)}{a \cdot (-1)} = \frac{b}{a} \] ### Conclusion Thus, we have shown that at \(t = \frac{\pi}{4}\): \[ \frac{dy}{dx} = \frac{b}{a} \]

To solve the problem, we need to find \(\frac{dy}{dx}\) when \(t = \frac{\pi}{4}\) given the equations: \[ x = a \sin(2t)(1 + \cos(2t)) \] \[ y = b \cos(2t)(1 - \cos(2t)) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), show that at pi/4,(dy)/(dx)=b/adot

If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t) , then show that ((dy)/(dx))_(t=pi//4) = (b)/(a) .

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), find the values of (dy)/(dx) at t=pi/4 and t=pi/3dot

If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t) show that dy/dx =0 at t=pi/6

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

If x=cost(3-2\ cos^2t) and y=sint(3-2sin^2t) find the value of (dy)/(dx) at t=pi/4

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x