Home
Class 12
MATHS
Differentiate (x)/(sinx) w.r.t . sinx....

Differentiate `(x)/(sinx)` w.r.t . `sinx`.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \frac{x}{\sin x} \) with respect to \( \sin x \), we will follow these steps: ### Step 1: Define the functions Let \( u = \frac{x}{\sin x} \) and \( v = \sin x \). We need to find \( \frac{du}{dv} \). ### Step 2: Find \( \frac{du}{dx} \) We will use the quotient rule for differentiation, which states that if \( u = \frac{f(x)}{g(x)} \), then: \[ \frac{du}{dx} = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2} \] Here, \( f(x) = x \) and \( g(x) = \sin x \). Calculating the derivatives: - \( f'(x) = 1 \) - \( g'(x) = \cos x \) Now applying the quotient rule: \[ \frac{du}{dx} = \frac{\sin x \cdot 1 - x \cdot \cos x}{(\sin x)^2} \] Thus, \[ \frac{du}{dx} = \frac{\sin x - x \cos x}{\sin^2 x} \] ### Step 3: Find \( \frac{dv}{dx} \) The derivative of \( v = \sin x \) is: \[ \frac{dv}{dx} = \cos x \] ### Step 4: Find \( \frac{du}{dv} \) Using the chain rule, we have: \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} \] Substituting the values we found: \[ \frac{du}{dv} = \frac{\frac{\sin x - x \cos x}{\sin^2 x}}{\cos x} \] This simplifies to: \[ \frac{du}{dv} = \frac{\sin x - x \cos x}{\sin^2 x \cdot \cos x} \] ### Step 5: Final simplification We can further simplify: \[ \frac{du}{dv} = \frac{\sin x}{\sin^2 x \cdot \cos x} - \frac{x \cos x}{\sin^2 x \cdot \cos x} \] This simplifies to: \[ \frac{du}{dv} = \frac{1}{\sin x \cdot \cos x} - \frac{x}{\sin^2 x} \] ### Final Answer Thus, the derivative of \( \frac{x}{\sin x} \) with respect to \( \sin x \) is: \[ \frac{du}{dv} = \frac{\sin x - x \cos x}{\sin^2 x \cdot \cos x} \]

To differentiate the function \( \frac{x}{\sin x} \) with respect to \( \sin x \), we will follow these steps: ### Step 1: Define the functions Let \( u = \frac{x}{\sin x} \) and \( v = \sin x \). We need to find \( \frac{du}{dv} \). ### Step 2: Find \( \frac{du}{dx} \) We will use the quotient rule for differentiation, which states that if \( u = \frac{f(x)}{g(x)} \), then: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate y=(e^x)/(1+sinx)

Differentiate y=(e^x)/(1+sinx)

Differentiate y=(e^x)/(1+sinx)

Differentiate x^(sinx), x >0 w.r.t. x.

Differentiate x^3 - 5 sinx w.r.t x

Differentiate x^5 + e^(x) w.r.t x

Differentiate 2x^2 + 4 sinx w.r.t x

Differentiate log sinx w.r.t. sqrt(cosx)

Differentiate sin^2x w.r.t e^(cosx) .

Differentiate log sinx w.r.t. sqrt(cosx) .