Home
Class 12
MATHS
Differentiate tan^(-1)((sqrt(1+x^2)-1)/x...

Differentiate `tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( u = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) with respect to \( v = \tan^{-1}(x) \), we will follow these steps: ### Step 1: Define the functions Let: - \( u = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) - \( v = \tan^{-1}(x) \) We need to find \( \frac{du}{dv} \). ### Step 2: Use the chain rule Using the chain rule, we have: \[ \frac{du}{dv} = \frac{du}{dx} \cdot \frac{dx}{dv} \] Since \( v = \tan^{-1}(x) \), we can find \( \frac{dx}{dv} \) as follows: \[ \frac{dx}{dv} = \frac{1}{\frac{dv}{dx}} = \frac{1}{\frac{1}{1+x^2}} = 1+x^2 \] ### Step 3: Differentiate \( u \) with respect to \( x \) To find \( \frac{du}{dx} \), we first need to differentiate \( u \): \[ u = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \] Using the derivative of the inverse tangent function: \[ \frac{du}{dx} = \frac{1}{1 + \left( \frac{\sqrt{1+x^2}-1}{x} \right)^2} \cdot \frac{d}{dx} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \] ### Step 4: Differentiate the inner function Let \( y = \frac{\sqrt{1+x^2}-1}{x} \). We need to differentiate \( y \): Using the quotient rule: \[ \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx}(\sqrt{1+x^2}-1) - (\sqrt{1+x^2}-1) \cdot \frac{d}{dx}(x)}{x^2} \] Calculating \( \frac{d}{dx}(\sqrt{1+x^2}-1) \): \[ \frac{d}{dx}(\sqrt{1+x^2}) = \frac{x}{\sqrt{1+x^2}} \] Thus: \[ \frac{dy}{dx} = \frac{x \cdot \frac{x}{\sqrt{1+x^2}} - \left(\sqrt{1+x^2}-1\right)}{x^2} \] ### Step 5: Substitute back into \( \frac{du}{dx} \) Now substitute \( \frac{dy}{dx} \) back into \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{1}{1 + \left( \frac{\sqrt{1+x^2}-1}{x} \right)^2} \cdot \frac{dy}{dx} \] ### Step 6: Combine to find \( \frac{du}{dv} \) Now substitute \( \frac{du}{dx} \) and \( \frac{dx}{dv} \) into the chain rule: \[ \frac{du}{dv} = \frac{du}{dx} \cdot (1+x^2) \] ### Step 7: Simplify the expression After substituting and simplifying, we find: \[ \frac{du}{dv} = \frac{1}{2} \] ### Final Answer Thus, the final result is: \[ \frac{du}{dv} = \frac{1}{2} \]

To differentiate \( u = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) with respect to \( v = \tan^{-1}(x) \), we will follow these steps: ### Step 1: Define the functions Let: - \( u = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) - \( v = \tan^{-1}(x) \) We need to find \( \frac{du}{dv} \). ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x , when x!=0.

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x] with respect to x

Differentiate sin^(-1)((2x)/(1+2x)) wrt to tan^(-1)x , -1

Differentiate w.r.t x tan (sqrt(x))

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).