Home
Class 12
MATHS
If sin(x y)+y/x=x^2-y^2 , find (dy)/(dx)...

If `sin(x y)+y/x=x^2-y^2` , find `(dy)/(dx)` .

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \( \sin(xy) + \frac{y}{x} = x^2 - y^2 \), we will differentiate both sides with respect to \(x\) and then solve for \(\frac{dy}{dx}\). ### Step-by-Step Solution: 1. **Differentiate both sides**: We start by differentiating the equation \( \sin(xy) + \frac{y}{x} = x^2 - y^2 \) with respect to \(x\). \[ \frac{d}{dx} \left( \sin(xy) \right) + \frac{d}{dx} \left( \frac{y}{x} \right) = \frac{d}{dx} \left( x^2 \right) - \frac{d}{dx} \left( y^2 \right) \] 2. **Apply the chain rule and product rule**: - For \( \sin(xy) \), we use the chain rule: \[ \frac{d}{dx} \left( \sin(xy) \right) = \cos(xy) \cdot \frac{d}{dx}(xy) = \cos(xy) \left( y + x \frac{dy}{dx} \right) \] - For \( \frac{y}{x} \), we use the quotient rule: \[ \frac{d}{dx} \left( \frac{y}{x} \right) = \frac{x \frac{dy}{dx} - y}{x^2} \] - The derivatives of \(x^2\) and \(y^2\) are: \[ \frac{d}{dx}(x^2) = 2x \quad \text{and} \quad \frac{d}{dx}(y^2) = 2y \frac{dy}{dx} \] 3. **Combine the derivatives**: Putting it all together, we have: \[ \cos(xy) \left( y + x \frac{dy}{dx} \right) + \frac{x \frac{dy}{dx} - y}{x^2} = 2x - 2y \frac{dy}{dx} \] 4. **Clear the fractions**: Multiply through by \(x^2\) to eliminate the fraction: \[ x^2 \cos(xy) \left( y + x \frac{dy}{dx} \right) + x \frac{dy}{dx} - y = 2x^3 - 2xy \frac{dy}{dx} \] 5. **Expand and collect terms**: Expanding gives: \[ x^2 y \cos(xy) + x^3 \cos(xy) \frac{dy}{dx} + x \frac{dy}{dx} - y = 2x^3 - 2xy \frac{dy}{dx} \] Rearranging terms gives: \[ (x^3 \cos(xy) + x + 2xy) \frac{dy}{dx} = 2x^3 + y - x^2 y \cos(xy) \] 6. **Solve for \(\frac{dy}{dx}\)**: Finally, we isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{2x^3 + y - x^2 y \cos(xy)}{x^3 \cos(xy) + x + 2xy} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2x^3 + y - x^2 y \cos(xy)}{x^3 \cos(xy) + x + 2xy} \]

To find \(\frac{dy}{dx}\) for the equation \( \sin(xy) + \frac{y}{x} = x^2 - y^2 \), we will differentiate both sides with respect to \(x\) and then solve for \(\frac{dy}{dx}\). ### Step-by-Step Solution: 1. **Differentiate both sides**: We start by differentiating the equation \( \sin(xy) + \frac{y}{x} = x^2 - y^2 \) with respect to \(x\). \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x^y+y^x=2, find (dy)/(dx) .

If x^y=y^x , find (dy)/(dx) .

If x^y=y^x ,then find (dy)/(dx)

If y^(x)=x^(sin y) find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x+y)^2=2a x y , find (dy)/(dx)

If y^x+x^y+x^x=a^b , find (dy)/(dx) .

If x^2+y^2=x-y Find dy/dx

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)