Home
Class 12
MATHS
Find (dy)/(dx) if, tan^(-1)(x^2+y^2)=a...

Find `(dy)/(dx)` if, `tan^(-1)(x^2+y^2)=a`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \(\tan^{-1}(x^2 + y^2) = a\), we will differentiate both sides with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** Start with the equation: \[ \tan^{-1}(x^2 + y^2) = a \] Differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(\tan^{-1}(x^2 + y^2)) = \frac{d}{dx}(a) \] Since \(a\) is a constant, its derivative is \(0\): \[ \frac{d}{dx}(\tan^{-1}(x^2 + y^2)) = 0 \] 2. **Apply the Chain Rule:** Using the chain rule, the derivative of \(\tan^{-1}(u)\) where \(u = x^2 + y^2\) is: \[ \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] Thus, \[ \frac{1}{1 + (x^2 + y^2)^2} \cdot \frac{d}{dx}(x^2 + y^2) = 0 \] 3. **Differentiate \(u = x^2 + y^2\):** Now, differentiate \(x^2 + y^2\): \[ \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 2x + 2y \frac{dy}{dx} \] 4. **Substitute Back:** Substitute this back into the equation: \[ \frac{1}{1 + (x^2 + y^2)^2} \cdot (2x + 2y \frac{dy}{dx}) = 0 \] Since the fraction is not zero, we can set the numerator to zero: \[ 2x + 2y \frac{dy}{dx} = 0 \] 5. **Solve for \(\frac{dy}{dx}\):** Rearranging gives: \[ 2y \frac{dy}{dx} = -2x \] Dividing both sides by \(2y\) (assuming \(y \neq 0\)): \[ \frac{dy}{dx} = -\frac{x}{y} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{x}{y} \]

To find \(\frac{dy}{dx}\) given the equation \(\tan^{-1}(x^2 + y^2) = a\), we will differentiate both sides with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** Start with the equation: \[ \tan^{-1}(x^2 + y^2) = a ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx)if 2=(x+y)^2

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ cosec^2x)

Using proper substitution, find (dy)/(dx) if y = tan^(-1)(sqrt(1+b^(2)x^(2)) - bx) .

Find dy/dx if y= tan^2((pix^2)/2)