Home
Class 12
MATHS
If (x^2+y^2)^2=x y , find (dy)/(dx)...

If `(x^2+y^2)^2=x y` , find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \((x^2 + y^2)^2 = xy\), we will follow these steps: ### Step 1: Expand the left side We start with the equation: \[ (x^2 + y^2)^2 = xy \] Using the identity \((a + b)^2 = a^2 + b^2 + 2ab\), we expand the left side: \[ x^4 + y^4 + 2x^2y^2 = xy \] ### Step 2: Differentiate both sides with respect to \(x\) Now, we differentiate both sides of the equation with respect to \(x\): \[ \frac{d}{dx}(x^4 + y^4 + 2x^2y^2) = \frac{d}{dx}(xy) \] ### Step 3: Apply the differentiation rules Using the power rule and the product rule, we differentiate the left side: - The derivative of \(x^4\) is \(4x^3\). - The derivative of \(y^4\) using the chain rule is \(4y^3 \frac{dy}{dx}\). - For \(2x^2y^2\), we apply the product rule: \[ \frac{d}{dx}(2x^2y^2) = 2x^2 \cdot \frac{d}{dx}(y^2) + y^2 \cdot \frac{d}{dx}(2x^2) = 2x^2(2y \frac{dy}{dx}) + y^2(4x) = 4xy^2 + 4x^2y \frac{dy}{dx} \] Putting it all together, we have: \[ 4x^3 + 4y^3 \frac{dy}{dx} + 4xy^2 + 4x^2y \frac{dy}{dx} = y + x \frac{dy}{dx} \] ### Step 4: Rearranging the equation Now, we rearrange the equation to isolate \(\frac{dy}{dx}\): \[ 4y^3 \frac{dy}{dx} + 4x^2y \frac{dy}{dx} - x \frac{dy}{dx} = y - 4x^3 - 4xy^2 \] Factoring out \(\frac{dy}{dx}\) from the left side: \[ \left(4y^3 + 4x^2y - x\right) \frac{dy}{dx} = y - 4x^3 - 4xy^2 \] ### Step 5: Solve for \(\frac{dy}{dx}\) Finally, we solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y - 4x^3 - 4xy^2}{4y^3 + 4x^2y - x} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{y - 4x^3 - 4xy^2}{4y^3 + 4x^2y - x} \]

To find \(\frac{dy}{dx}\) for the equation \((x^2 + y^2)^2 = xy\), we will follow these steps: ### Step 1: Expand the left side We start with the equation: \[ (x^2 + y^2)^2 = xy \] Using the identity \((a + b)^2 = a^2 + b^2 + 2ab\), we expand the left side: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If (x+y)^2=2a x y , find (dy)/(dx)

If x y=c^2 , find (dy)/(dx)

If sin(x y)+y/x=x^2-y^2 , find (dy)/(dx) .

If x y+y^2 = tanx+y ,then find (dy)/(dx)

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)

If x^y+y^x=2, find (dy)/(dx) .

If y^2=a x^2+b x+c , then find (dy)/(dx)

If y=cos^2x , then find (dy)/(dx) .

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If x^(y)=2^(x-y) then Find (dy)/(dx)=