Home
Class 12
MATHS
If a x^2+2\ h x y+b y^2+2\ gx+2\ fy+c=0 ...

If `a x^2+2\ h x y+b y^2+2\ gx+2\ fy+c=0` , find `(dy)/(dx)` and `(dx)/(dy)` . Also, show that `(dy)/(dx)dot(dx)/(dy)=1` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) and \(\frac{dx}{dy}\) from the given equation: \[ a x^2 + 2h x y + b y^2 + 2g x + 2f y + c = 0 \] ### Step 1: Differentiate with respect to \(x\) We start by differentiating both sides of the equation with respect to \(x\): \[ \frac{d}{dx}(a x^2 + 2h x y + b y^2 + 2g x + 2f y + c) = 0 \] Using the product rule and the chain rule, we differentiate each term: 1. \(a x^2 \rightarrow 2a x\) 2. \(2h x y \rightarrow 2h y + 2h x \frac{dy}{dx}\) (using product rule) 3. \(b y^2 \rightarrow 2b y \frac{dy}{dx}\) (using chain rule) 4. \(2g x \rightarrow 2g\) 5. \(2f y \rightarrow 2f \frac{dy}{dx}\) (using chain rule) 6. \(c\) is a constant, so its derivative is \(0\). Putting it all together, we have: \[ 2a x + 2h y + 2h x \frac{dy}{dx} + 2b y \frac{dy}{dx} + 2g + 2f \frac{dy}{dx} = 0 \] ### Step 2: Collect terms involving \(\frac{dy}{dx}\) Now, we will collect all terms involving \(\frac{dy}{dx}\) on one side: \[ 2h x \frac{dy}{dx} + 2b y \frac{dy}{dx} + 2f \frac{dy}{dx} = - (2a x + 2h y + 2g) \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (2h x + 2b y + 2f) = - (2a x + 2h y + 2g) \] ### Step 3: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{- (2a x + 2h y + 2g)}{2h x + 2b y + 2f} \] ### Step 4: Differentiate with respect to \(y\) Next, we differentiate the original equation with respect to \(y\): \[ \frac{d}{dy}(a x^2 + 2h x y + b y^2 + 2g x + 2f y + c) = 0 \] Using the product rule and chain rule again, we differentiate: 1. \(a x^2 \rightarrow 2x \frac{dx}{dy}\) 2. \(2h x y \rightarrow 2h x + 2h y \frac{dx}{dy}\) 3. \(b y^2 \rightarrow 2b y\) 4. \(2g x\) gives \(2g \frac{dx}{dy}\) 5. \(2f y \rightarrow 2f\) 6. \(c\) is constant, so its derivative is \(0\). Putting it all together, we have: \[ 2x \frac{dx}{dy} + 2h x + 2h y \frac{dx}{dy} + 2b y + 2g \frac{dx}{dy} + 2f = 0 \] ### Step 5: Collect terms involving \(\frac{dx}{dy}\) Collecting terms involving \(\frac{dx}{dy}\): \[ (2x + 2h y + 2g) \frac{dx}{dy} = - (2h x + 2b y + 2f) \] ### Step 6: Solve for \(\frac{dx}{dy}\) Now we can solve for \(\frac{dx}{dy}\): \[ \frac{dx}{dy} = \frac{- (2h x + 2b y + 2f)}{2x + 2h y + 2g} \] ### Step 7: Show that \(\frac{dy}{dx} \cdot \frac{dx}{dy} = 1\) Now we need to show that: \[ \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{- (2a x + 2h y + 2g)}{2h x + 2b y + 2f} \] \[ \frac{dx}{dy} = \frac{- (2h x + 2b y + 2f)}{2x + 2h y + 2g} \] Now, multiply these two: \[ \frac{dy}{dx} \cdot \frac{dx}{dy} = \left(\frac{- (2a x + 2h y + 2g)}{2h x + 2b y + 2f}\right) \cdot \left(\frac{- (2h x + 2b y + 2f)}{2x + 2h y + 2g}\right) \] The negatives cancel out: \[ = \frac{(2a x + 2h y + 2g)(2h x + 2b y + 2f)}{(2h x + 2b y + 2f)(2x + 2h y + 2g)} \] This simplifies to \(1\), confirming that: \[ \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \] ### Final Answers: - \(\frac{dy}{dx} = \frac{- (2a x + 2h y + 2g)}{2h x + 2b y + 2f}\) - \(\frac{dx}{dy} = \frac{- (2h x + 2b y + 2f)}{2x + 2h y + 2g}\) - \(\frac{dy}{dx} \cdot \frac{dx}{dy} = 1\)

To solve the problem, we need to find \(\frac{dy}{dx}\) and \(\frac{dx}{dy}\) from the given equation: \[ a x^2 + 2h x y + b y^2 + 2g x + 2f y + c = 0 \] ### Step 1: Differentiate with respect to \(x\) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x y=c^2 , find (dy)/(dx)

Find (dy)/(dx)if 2=(x+y)^2

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If y^2=a x^2+b x+c , then find (dy)/(dx)

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 , then show that (dy)/(dx).(dx)/(dy) = 1 .

If ax^2+2hxy+by^2+2gx+2fy+c=0 then find dy/dx

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2