Home
Class 12
MATHS
If x=e^(x//y) , prove that (dy)/(dx)=(x-...

If `x=e^(x//y)` , prove that `(dy)/(dx)=(x-y)/(xlogx)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \frac{x - y}{x \log x}\) given that \(x = e^{\frac{x}{y}}\), we will follow these steps: ### Step 1: Differentiate both sides We start with the equation: \[ x = e^{\frac{x}{y}} \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(x) = \frac{d}{dx}\left(e^{\frac{x}{y}}\right) \] This gives us: \[ 1 = \frac{d}{dx}\left(e^{\frac{x}{y}}\right) \] ### Step 2: Apply the chain rule Using the chain rule on the right side: \[ 1 = e^{\frac{x}{y}} \cdot \frac{d}{dx}\left(\frac{x}{y}\right) \] ### Step 3: Differentiate \(\frac{x}{y}\) using the quotient rule Now we need to differentiate \(\frac{x}{y}\) using the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{y}\right) = \frac{y \cdot \frac{d}{dx}(x) - x \cdot \frac{dy}{dx}}{y^2} \] Substituting \(\frac{d}{dx}(x) = 1\): \[ \frac{d}{dx}\left(\frac{x}{y}\right) = \frac{y \cdot 1 - x \cdot \frac{dy}{dx}}{y^2} = \frac{y - x \frac{dy}{dx}}{y^2} \] ### Step 4: Substitute back into the equation Substituting this back into our equation: \[ 1 = e^{\frac{x}{y}} \cdot \frac{y - x \frac{dy}{dx}}{y^2} \] ### Step 5: Rearranging the equation Now, we can rearrange this equation: \[ y^2 = e^{\frac{x}{y}} (y - x \frac{dy}{dx}) \] Expanding this gives: \[ y^2 = y e^{\frac{x}{y}} - x e^{\frac{x}{y}} \frac{dy}{dx} \] ### Step 6: Isolate \(\frac{dy}{dx}\) Now, we isolate \(\frac{dy}{dx}\): \[ x e^{\frac{x}{y}} \frac{dy}{dx} = y e^{\frac{x}{y}} - y^2 \] \[ \frac{dy}{dx} = \frac{y e^{\frac{x}{y}} - y^2}{x e^{\frac{x}{y}}} \] ### Step 7: Simplify the expression Factoring out \(y\) from the numerator: \[ \frac{dy}{dx} = \frac{y(e^{\frac{x}{y}} - y)}{x e^{\frac{x}{y}}} \] ### Step 8: Substitute \(e^{\frac{x}{y}} = x\) From our original equation \(x = e^{\frac{x}{y}}\), we can substitute \(e^{\frac{x}{y}}\) with \(x\): \[ \frac{dy}{dx} = \frac{y(x - y)}{x \cdot x} = \frac{y(x - y)}{x^2} \] ### Step 9: Rewrite using \(\log x\) Since \(y = x \log x\) (from \(x = e^{\frac{x}{y}}\)), we can express \(y\) in terms of \(x\): \[ \frac{dy}{dx} = \frac{x - y}{x \log x} \] Thus, we have proved that: \[ \frac{dy}{dx} = \frac{x - y}{x \log x} \]

To prove that \(\frac{dy}{dx} = \frac{x - y}{x \log x}\) given that \(x = e^{\frac{x}{y}}\), we will follow these steps: ### Step 1: Differentiate both sides We start with the equation: \[ x = e^{\frac{x}{y}} \] Differentiating both sides with respect to \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If e^(x+y)-x=0 , prove that (dy)/(dx)=(1-x)/x

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y=x/(x+2) , prove that x(dy)/(dx)=(1-y)y

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0