Home
Class 12
MATHS
If y=(cosx)^(cosx)^(cosx)^^((((oo)))),p ...

If `y=(cosx)^(cosx)^(cosx)^^((((oo)))),p rov et h a t(dy)/(dx)=-(y^2tanx)/((1-ylogcosx)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given for \( y \): \[ y = (\cos x)^{(\cos x)^{(\cos x)^{\cdots}}} \] This expression can be rewritten using the property of infinite exponentials. We can assume that the infinite exponent is equal to \( y \): \[ y = \cos x^y \] ### Step 1: Take the logarithm of both sides Taking the logarithm of both sides gives: \[ \log y = \log(\cos x^y) \] Using the logarithmic identity \( \log(a^b) = b \log a \), we can rewrite the right side: \[ \log y = y \log(\cos x) \] ### Step 2: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\log y) = \frac{d}{dx}(y \log(\cos x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}(y \log(\cos x)) = \frac{dy}{dx} \log(\cos x) + y \frac{d}{dx}(\log(\cos x)) \] The derivative of \( \log(\cos x) \) is: \[ \frac{d}{dx}(\log(\cos x)) = -\tan x \] Thus, we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log(\cos x) - y \tan x \] ### Step 3: Rearranging the equation Rearranging the equation gives: \[ \frac{1}{y} \frac{dy}{dx} - \frac{dy}{dx} \log(\cos x) = -y \tan x \] Factoring out \( \frac{dy}{dx} \) from the left side: \[ \frac{dy}{dx} \left( \frac{1}{y} - \log(\cos x) \right) = -y \tan x \] ### Step 4: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -y \tan x \cdot \frac{1}{\frac{1}{y} - \log(\cos x)} \] This simplifies to: \[ \frac{dy}{dx} = -y^2 \tan x \cdot \frac{1}{1 - y \log(\cos x)} \] ### Final Result Thus, we have proven that: \[ \frac{dy}{dx} = -\frac{y^2 \tan x}{1 - y \log(\cos x)} \]

To solve the problem, we start with the expression given for \( y \): \[ y = (\cos x)^{(\cos x)^{(\cos x)^{\cdots}}} \] This expression can be rewritten using the property of infinite exponentials. We can assume that the infinite exponent is equal to \( y \): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=(cosx)^((((cosx)^(((cosx)^((...oo)) prove that (dy)/(dx)=-(y^2tanx)/(1-ylogcosx)

If y=cosx^(cosx^(cosx^dotoo)) , prove that (dy)/(dx)=-(y^2tanx)/((1-ylogcosx))

If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx) =(y^(2)tanx)/(ylogcosx-1)

If x y=4,p rov et h a tx((dy)/(dx)+y^2)=3y

If y=a^(x^(a^(x^......)^oo))), \ p rov et h a t \ (dy)/(dx)=(y^2logy)/(x(1-ylogxdotlogy)

If x^(13)y^7=(x+y)^(20),p rov et h a t(dy)/(dx)=y/xdot

If x^ydoty^x=1,p rov et h a t(dy)/(dx)=-(y(y+xlogy)/(x(ylogx+x)

If y=(sinx)/(1+(cosx)/(1+(sinx)/(1+(cosx)/(1+ tooo)))),p rov et h a t(dy)/(dx)=((1+y)cosx+ysinx)/(1+2y+cosx-sinx)

If x y^2=1,p rov et h a t2(dy)/(dx)+y^3=0

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot