Home
Class 12
MATHS
If xsin(a+y)+sina.cos(a+y)=0. Prove tha...

If ` xsin(a+y)+sina.cos(a+y)=0.` Prove that : `(dy)/(dx)=(sin^2(a+y)/(sina))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0. \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \( x \): \[ x \sin(a + y) = -\sin a \cos(a + y). \] ### Step 2: Expressing \( x \) Now, we can express \( x \) in terms of \( y \): \[ x = -\frac{\sin a \cos(a + y)}{\sin(a + y)}. \] ### Step 3: Simplifying the Expression Using the trigonometric identity, we can simplify the expression: \[ x = -\sin a \cdot \frac{\cos(a + y)}{\sin(a + y)} = -\sin a \cdot \cot(a + y). \] ### Step 4: Differentiating with Respect to \( y \) Next, we differentiate both sides with respect to \( y \): \[ \frac{dx}{dy} = -\sin a \cdot \frac{d}{dy}(\cot(a + y)). \] ### Step 5: Applying the Derivative of Cotangent The derivative of \( \cot(u) \) is \( -\csc^2(u) \), so we apply the chain rule: \[ \frac{d}{dy}(\cot(a + y)) = -\csc^2(a + y) \cdot \frac{d}{dy}(a + y) = -\csc^2(a + y) \cdot 1 = -\csc^2(a + y). \] Thus, we have: \[ \frac{dx}{dy} = -\sin a \cdot (-\csc^2(a + y)) = \sin a \cdot \csc^2(a + y). \] ### Step 6: Simplifying Further Since \( \csc^2(a + y) = \frac{1}{\sin^2(a + y)} \), we can write: \[ \frac{dx}{dy} = \frac{\sin a}{\sin^2(a + y)}. \] ### Step 7: Finding \( \frac{dy}{dx} \) To find \( \frac{dy}{dx} \), we take the reciprocal of \( \frac{dx}{dy} \): \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}. \] ### Conclusion Thus, we have proved that: \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}. \]

To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0. \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \( x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

(dy)/(dx)=(x+sin x)/(y+cos y)

If y=xsin(a+y) , prove that (dy)/(dx)=(s in^2(a+y))/(sin(a+y)-y cos\ (a+y))

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .