Home
Class 12
MATHS
If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y), pro...

If `sqrt(1-x^2) + sqrt(1-y^2)=a(x-y)`, prove that `(dy)/(dx)= sqrt((1-y^2)/(1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\) given the equation \(\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)\), we will follow these steps: ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \] 2. **Substitute \(x = \sin \alpha\) and \(y = \sin \beta\):** \[ \sqrt{1 - \sin^2 \alpha} + \sqrt{1 - \sin^2 \beta} = a(\sin \alpha - \sin \beta) \] Using the identity \(1 - \sin^2 \theta = \cos^2 \theta\), we can rewrite the equation as: \[ \cos \alpha + \cos \beta = a(\sin \alpha - \sin \beta) \] 3. **Use trigonometric identities:** Recall the identities: \[ \sin C - \sin D = 2 \cos\left(\frac{C + D}{2}\right) \sin\left(\frac{C - D}{2}\right) \] \[ \cos C + \cos D = 2 \cos\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right) \] Applying these identities: \[ 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) = a \cdot 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] 4. **Cancel common terms:** Assuming \(\cos\left(\frac{\alpha + \beta}{2}\right) \neq 0\), we can divide both sides by \(2 \cos\left(\frac{\alpha + \beta}{2}\right)\): \[ \cos\left(\frac{\alpha - \beta}{2}\right) = a \sin\left(\frac{\alpha - \beta}{2}\right) \] 5. **Rearranging the equation:** This can be rewritten as: \[ \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\sin\left(\frac{\alpha - \beta}{2}\right)} = a \] Thus, we have: \[ \cot\left(\frac{\alpha - \beta}{2}\right) = a \] 6. **Express \(\alpha - \beta\):** From the cotangent, we can express: \[ \frac{\alpha - \beta}{2} = \cot^{-1}(a) \implies \alpha - \beta = 2 \cot^{-1}(a) \] 7. **Differentiate both sides with respect to \(x\):** Differentiating \(\alpha\) and \(\beta\): \[ \frac{d}{dx}(\sin^{-1}(x)) - \frac{d}{dx}(\sin^{-1}(y)) = 0 \] Using the chain rule: \[ \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = 0 \] 8. **Solve for \(\frac{dy}{dx}\):** Rearranging gives: \[ \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \] 9. **Final expression:** Thus, we have shown that: \[ \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}} \]

To prove that \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\) given the equation \(\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)\), we will follow these steps: ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If ysqrt(1-x^2)+xsqrt(1-y^2)=1," prove that "(dy)/(dx)= - sqrt((1-y^2)/(1-x^2))dot

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

dy/dx + sqrt(((1-y^2)/(1-x^2))) = 0

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6,)

If ysqrt(1-x^2)+xsqrt(1-y^2)=1 show that (dy)/(dx)=-sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals