Home
Class 12
MATHS
Verify mean value theorem for the functi...

Verify mean value theorem for the function `f(x) = 1/(4x-1)` in `[1,4]`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the Mean Value Theorem (MVT) for the function \( f(x) = \frac{1}{4x - 1} \) on the interval \([1, 4]\), we will follow these steps: ### Step 1: Check the continuity of \( f(x) \) on \([1, 4]\) The function \( f(x) = \frac{1}{4x - 1} \) is defined for all \( x \) except where the denominator is zero. We find the point where the denominator is zero: \[ 4x - 1 = 0 \implies x = \frac{1}{4} \] Since \( \frac{1}{4} \) is not in the interval \([1, 4]\), the function \( f(x) \) is continuous on \([1, 4]\). ### Step 2: Check the differentiability of \( f(x) \) on \((1, 4)\) Next, we need to find the derivative \( f'(x) \). Using the quotient rule: \[ f'(x) = \frac{d}{dx}\left(\frac{1}{4x - 1}\right) = \frac{0 \cdot (4x - 1) - 1 \cdot 4}{(4x - 1)^2} = \frac{-4}{(4x - 1)^2} \] The derivative \( f'(x) \) exists for all \( x \) in the interval \((1, 4)\) since \( 4x - 1 \neq 0 \) for \( x \in (1, 4) \). ### Step 3: Apply the Mean Value Theorem According to the Mean Value Theorem, there exists at least one \( c \in (1, 4) \) such that: \[ f'(c) = \frac{f(b) - f(a)}{b - a} \] where \( a = 1 \) and \( b = 4 \). First, we calculate \( f(1) \) and \( f(4) \): \[ f(1) = \frac{1}{4(1) - 1} = \frac{1}{3} \] \[ f(4) = \frac{1}{4(4) - 1} = \frac{1}{15} \] Now, we can find \( f(b) - f(a) \): \[ f(4) - f(1) = \frac{1}{15} - \frac{1}{3} = \frac{1}{15} - \frac{5}{15} = -\frac{4}{15} \] Now, calculate \( b - a \): \[ b - a = 4 - 1 = 3 \] Now we can find the average rate of change: \[ \frac{f(b) - f(a)}{b - a} = \frac{-\frac{4}{15}}{3} = -\frac{4}{45} \] ### Step 4: Set the derivative equal to the average rate of change Now we set \( f'(c) \) equal to \(-\frac{4}{45}\): \[ \frac{-4}{(4c - 1)^2} = -\frac{4}{45} \] By simplifying, we can cancel \(-4\) from both sides: \[ \frac{1}{(4c - 1)^2} = \frac{1}{45} \] Taking the reciprocal gives: \[ (4c - 1)^2 = 45 \] Taking the square root on both sides: \[ 4c - 1 = \pm \sqrt{45} = \pm 3\sqrt{5} \] ### Step 5: Solve for \( c \) Now we solve for \( c \): 1. \( 4c - 1 = 3\sqrt{5} \) \[ 4c = 3\sqrt{5} + 1 \implies c = \frac{3\sqrt{5} + 1}{4} \] 2. \( 4c - 1 = -3\sqrt{5} \) \[ 4c = -3\sqrt{5} + 1 \implies c = \frac{-3\sqrt{5} + 1}{4} \] ### Step 6: Determine which \( c \) is in the interval \((1, 4)\) Now we check which of these values is in the interval \((1, 4)\): 1. For \( c = \frac{3\sqrt{5} + 1}{4} \): - Since \( \sqrt{5} \approx 2.236 \), \( 3\sqrt{5} \approx 6.708 \). - So \( c \approx \frac{6.708 + 1}{4} \approx \frac{7.708}{4} \approx 1.927 \) (which is in \((1, 4)\)). 2. For \( c = \frac{-3\sqrt{5} + 1}{4} \): - This value will be negative since \( -3\sqrt{5} \) is negative and thus not in the interval \((1, 4)\). ### Conclusion Thus, we have verified the Mean Value Theorem for the function \( f(x) = \frac{1}{4x - 1} \) on the interval \([1, 4]\) with \( c = \frac{3\sqrt{5} + 1}{4} \). ---

To verify the Mean Value Theorem (MVT) for the function \( f(x) = \frac{1}{4x - 1} \) on the interval \([1, 4]\), we will follow these steps: ### Step 1: Check the continuity of \( f(x) \) on \([1, 4]\) The function \( f(x) = \frac{1}{4x - 1} \) is defined for all \( x \) except where the denominator is zero. We find the point where the denominator is zero: \[ 4x - 1 = 0 \implies x = \frac{1}{4} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Verify mean value theorem for the function f(x)=sqrt(25-x^(2)) in [1,5]

Verify mean value theorem for the function f(x) = x^(3)-2x^(2)-x+3 in [0,1]

The value of c in Lagrange's Mean Value theorem for the function f(x) = x + (1)/(x) , I n [1,4] is

The value of c in Lagrange.s mean value theorem for the function f (x) = x ^(2) + x +1 , x in [0,4] is :

Verify Lagrange's Mean value theorem for the function f(x) = x^(2) -1 in the interval [3,5].

Verify Lagrange 's mean value theorem for the function f(x) = x+ (1)/(x) , 1 le x le 3

The value of c in Lagrange 's mean value theorem for the function f(x)=x^(2)+x+1, x in[0,4]

Verify Lagrange's mean value theorem for the function f(x) = 2x^(2) -10 x + 29 in the interval [2.7]

The value of c in Lagrange's mean value theorem for the function f(x) = |x| in the interval [-1, 1] is

Verify lagranges mean value theorem for the function f(x)=(x-3)(x-6)(x-9) on [3, 5]