Home
Class 12
MATHS
Verify mean value theorem for the functi...

Verify mean value theorem for the function `f(x)=sqrt(25-x^(2))` in `[1,5]`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the Mean Value Theorem (MVT) for the function \( f(x) = \sqrt{25 - x^2} \) on the interval \([1, 5]\), we need to follow these steps: ### Step 1: Check Continuity The function \( f(x) = \sqrt{25 - x^2} \) is defined for values where \( 25 - x^2 \geq 0 \). **Inequality:** \[ 25 - x^2 \geq 0 \implies x^2 \leq 25 \implies -5 \leq x \leq 5 \] Since the interval \([1, 5]\) lies within the domain of \( f(x) \), the function is continuous on \([1, 5]\). ### Step 2: Check Differentiability Next, we need to find the derivative of \( f(x) \). **Derivative Calculation:** Using the chain rule, \[ f'(x) = \frac{d}{dx} \left( \sqrt{25 - x^2} \right) = \frac{-x}{\sqrt{25 - x^2}} \] This derivative exists for all \( x \) in the open interval \( (1, 5) \). ### Step 3: Apply Mean Value Theorem According to the Mean Value Theorem, there exists at least one \( c \in (1, 5) \) such that: \[ f'(c) = \frac{f(5) - f(1)}{5 - 1} \] **Calculating \( f(5) \) and \( f(1) \):** \[ f(5) = \sqrt{25 - 5^2} = \sqrt{0} = 0 \] \[ f(1) = \sqrt{25 - 1^2} = \sqrt{24} = 2\sqrt{6} \] **Substituting into MVT:** \[ f'(c) = \frac{0 - 2\sqrt{6}}{4} = -\frac{\sqrt{6}}{2} \] ### Step 4: Set Up the Equation Now, we set \( f'(c) \) equal to \(-\frac{\sqrt{6}}{2}\): \[ -\frac{c}{\sqrt{25 - c^2}} = -\frac{\sqrt{6}}{2} \] ### Step 5: Solve for \( c \) Cross-multiplying gives: \[ 2c = \sqrt{6} \sqrt{25 - c^2} \] Squaring both sides: \[ 4c^2 = 6(25 - c^2) \] \[ 4c^2 = 150 - 6c^2 \] \[ 10c^2 = 150 \] \[ c^2 = 15 \implies c = \sqrt{15} \text{ (since } c \text{ must be positive)} \] ### Step 6: Verify \( c \) is in the Interval Now we check if \( c = \sqrt{15} \) lies within the interval \((1, 5)\): \[ 1 < \sqrt{15} < 5 \] Since \( \sqrt{15} \approx 3.87 \), it is indeed in the interval \((1, 5)\). ### Conclusion Thus, we have verified the Mean Value Theorem for the function \( f(x) = \sqrt{25 - x^2} \) on the interval \([1, 5]\). ---

To verify the Mean Value Theorem (MVT) for the function \( f(x) = \sqrt{25 - x^2} \) on the interval \([1, 5]\), we need to follow these steps: ### Step 1: Check Continuity The function \( f(x) = \sqrt{25 - x^2} \) is defined for values where \( 25 - x^2 \geq 0 \). **Inequality:** \[ 25 - x^2 \geq 0 \implies x^2 \leq 25 \implies -5 \leq x \leq 5 ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Verify mean value theorem for the function f(x) = x^(3)-2x^(2)-x+3 in [0,1]

Verify Lagrange's Mean Value Theorem for the function f(x)=sqrt(x^(2)-x) in the interval [1,4] .

Verify mean value theorem for the function f(x) = 1/(4x-1) in [1,4]

Find c of the Lagrange's mean value theorem for f(x)=sqrt(25-x^(2)) in [1, 5] .

Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2] .

Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2] .

Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2] .

The value of c in Lagrange 's mean value theorem for the function f(x)=x^(2)+x+1, x in[0,4]

Verify Lagrange's Mean value theorem for the function f(x) = x^(2) -1 in the interval [3,5].

Verify Lagrange's mean value theorem for the function f(x) = 2x^(2) -10 x + 29 in the interval [2.7]