Home
Class 12
MATHS
If x^m y^n=(x+y)^(m+n),p rov et h a t(dy...

If `x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \frac{y}{x}\) given that \(x^m y^n = (x+y)^{m+n}\), follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^m y^n = (x+y)^{m+n} \] Taking the logarithm of both sides gives: \[ \log(x^m y^n) = \log((x+y)^{m+n}) \] ### Step 2: Apply logarithmic identities Using the properties of logarithms, we can rewrite both sides: \[ m \log x + n \log y = (m+n) \log(x+y) \] ### Step 3: Differentiate both sides with respect to \(x\) Now, differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(m \log x + n \log y) = \frac{d}{dx}((m+n) \log(x+y)) \] Using the chain rule and product rule, we get: \[ \frac{m}{x} + n \frac{1}{y} \frac{dy}{dx} = (m+n) \left(\frac{1}{x+y} \left(1 + \frac{dy}{dx}\right)\right) \] ### Step 4: Simplify the right-hand side Expanding the right-hand side gives: \[ \frac{m}{x} + n \frac{1}{y} \frac{dy}{dx} = \frac{(m+n)}{x+y} + \frac{(m+n)}{x+y} \frac{dy}{dx} \] ### Step 5: Rearranging terms Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ n \frac{1}{y} \frac{dy}{dx} - \frac{(m+n)}{x+y} \frac{dy}{dx} = \frac{m}{x} - \frac{(m+n)}{x+y} \] ### Step 6: Factor out \(\frac{dy}{dx}\) Factoring out \(\frac{dy}{dx}\) from the left side: \[ \frac{dy}{dx} \left(n \frac{1}{y} - \frac{(m+n)}{x+y}\right) = \frac{m}{x} - \frac{(m+n)}{x+y} \] ### Step 7: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{m}{x} - \frac{(m+n)}{x+y}}{n \frac{1}{y} - \frac{(m+n)}{x+y}} \] ### Step 8: Simplify the expression After simplifying the expression, we find that: \[ \frac{dy}{dx} = \frac{y}{x} \] ### Conclusion Thus, we have proved that: \[ \frac{dy}{dx} = \frac{y}{x} \]

To prove that \(\frac{dy}{dx} = \frac{y}{x}\) given that \(x^m y^n = (x+y)^{m+n}\), follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^m y^n = (x+y)^{m+n} \] Taking the logarithm of both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x^(13)y^7=(x+y)^(20),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n), Prove that (dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n), prove that (dy)/(dx)=y/x .

If x^m y^n=(x+y)^(m+n) , prove that (dy)/(dx)=y/x .

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If x^my^n = (x + y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If x y^2=1,p rov et h a t2(dy)/(dx)+y^3=0

If e^x+e^y=e^(x+y),p rov e t h a t(dy)/(dx)+e^(y-x)=0

If (sin"x")^y=x+y ,p rov et h a t(dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)