Home
Class 12
MATHS
If x=sint ,y=sinp t ,"p r o v et h a t"...

If `x=sint ,y=sinp t ,"p r o v et h a t"` `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \((1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2 y = 0\) given \(x = \sin t\) and \(y = \sin(pt)\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) Given: - \(x = \sin t\) - \(y = \sin(pt)\) We differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \cos t \] Now differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = p \cos(pt) \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{p \cos(pt)}{\cos t} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) with respect to \(x\) Now we need to differentiate \(\frac{dy}{dx}\) with respect to \(x\). We will use the quotient rule: \[ \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{p \cos(pt)}{\cos t}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = p \cos(pt)\) and \(v = \cos t\). ### Step 4: Compute \(\frac{du}{dx}\) and \(\frac{dv}{dx}\) We need to express \(\frac{du}{dx}\) and \(\frac{dv}{dx}\) in terms of \(x\): - Since \(u = p \cos(pt)\), we have: \[ \frac{du}{dx} = -p^2 \sin(pt) \frac{dt}{dx} \] - Since \(v = \cos t\), we have: \[ \frac{dv}{dx} = -\sin t \frac{dt}{dx} \] ### Step 5: Substitute \(\frac{dt}{dx}\) From \(\frac{dx}{dt} = \cos t\), we have: \[ \frac{dt}{dx} = \frac{1}{\cos t} = \frac{1}{\sqrt{1 - x^2}} \] ### Step 6: Substitute back into the derivatives Now substituting back: \[ \frac{du}{dx} = -p^2 \sin(pt) \frac{1}{\sqrt{1 - x^2}} \] \[ \frac{dv}{dx} = -\sin t \frac{1}{\sqrt{1 - x^2}} \] ### Step 7: Substitute into the second derivative Now we can substitute these into the expression for \(\frac{d^2y}{dx^2}\) and simplify: \[ \frac{d^2y}{dx^2} = \frac{\cos t \left(-p^2 \sin(pt) \frac{1}{\sqrt{1 - x^2}}\right) - p \cos(pt) \left(-\sin t \frac{1}{\sqrt{1 - x^2}}\right)}{\cos^2 t} \] ### Step 8: Combine and simplify After substituting and simplifying, we will arrive at: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2 y = 0 \] ### Conclusion Thus, we have proved the required equation.

To prove the equation \((1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2 y = 0\) given \(x = \sin t\) and \(y = \sin(pt)\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) Given: - \(x = \sin t\) - \(y = \sin(pt)\) We differentiate \(x\) with respect to \(t\): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If y="sin"(sinx),"p r o v et h a t" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If x=asint-bcost ,y=acost+bsint ,"p r o v et h a t" (d^2y)/(dx^2)=-(x^2+y^2)/(y^3)

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y="log"(1+cosx),"p r o v et h a t"(d^3y)/(dx^3)+(d^2y)/(dx^2)dot(dy)/(dx)=0.

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .