Home
Class 12
MATHS
If y=x^(tanx)+sqrt((x^2+1)/2) , find (dy...

If `y=x^(tanx)+sqrt((x^2+1)/2)` , find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}} \), we will follow these steps: ### Step 1: Differentiate \( x^{\tan x} \) Let \( u = x^{\tan x} \). To differentiate \( u \), we will take the natural logarithm of both sides: \[ \ln u = \tan x \cdot \ln x \] Now, differentiate both sides with respect to \( x \): Using the chain rule on the left side and the product rule on the right side, we get: \[ \frac{1}{u} \frac{du}{dx} = \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \] Now, multiply both sides by \( u \): \[ \frac{du}{dx} = u \left( \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right) \] Substituting back \( u = x^{\tan x} \): \[ \frac{du}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right) \] ### Step 2: Differentiate \( \sqrt{\frac{x^2 + 1}{2}} \) Now, we differentiate the second part of \( y \): \[ v = \sqrt{\frac{x^2 + 1}{2}} = \frac{1}{\sqrt{2}} \sqrt{x^2 + 1} \] Using the chain rule, we differentiate: \[ \frac{dv}{dx} = \frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{x^2 + 1}} \cdot (2x) = \frac{x}{\sqrt{2(x^2 + 1)}} \] ### Step 3: Combine the derivatives Now, we can combine the derivatives to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right) + \frac{x}{\sqrt{2(x^2 + 1)}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) + \frac{x}{\sqrt{2(x^2 + 1)}} \] ---

To differentiate the function \( y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}} \), we will follow these steps: ### Step 1: Differentiate \( x^{\tan x} \) Let \( u = x^{\tan x} \). To differentiate \( u \), we will take the natural logarithm of both sides: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=x^(tanx)+sqrt((x^2+1)/2),fin d(dy)/(dx)

If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5) , find (dy)/(dx)

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)), find (dy)/(dx)

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

If y=cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2) ,x is [-1/2,0] , find (dy)/(dx)

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

If y=cos^(-1){xsqrt(1-x)+sqrt(x)sqrt(1-x^2)} and 0