Home
Class 12
MATHS
If f(x)=[{:(mx+1,if x le (pi)/(2)),(sin...

If `f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):}` is continuous at `x = (pi)/(2)`, then find the relation between m and n.

A

`m = 1, n = 0`

B

`m = (n pi)/(2)+1`

C

`n = (mpi)/(2)`

D

`m = n = (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} mx + 1 & \text{if } x \leq \frac{\pi}{2} \\ \sin x + n & \text{if } x > \frac{\pi}{2} \end{cases} \] ### Step 1: Set up the continuity condition For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \), we need the left-hand limit as \( x \) approaches \( \frac{\pi}{2} \) from the left to equal the right-hand limit as \( x \) approaches \( \frac{\pi}{2} \) from the right. This can be mathematically expressed as: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] ### Step 2: Calculate the left-hand limit For \( x \) approaching \( \frac{\pi}{2} \) from the left, we use the first piece of the function: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}} (mx + 1) = m \cdot \frac{\pi}{2} + 1 \] ### Step 3: Calculate the right-hand limit For \( x \) approaching \( \frac{\pi}{2} \) from the right, we use the second piece of the function: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}} (\sin x + n) = \sin\left(\frac{\pi}{2}\right) + n = 1 + n \] ### Step 4: Set the limits equal to each other Now, we set the two limits equal to establish the continuity condition: \[ m \cdot \frac{\pi}{2} + 1 = 1 + n \] ### Step 5: Simplify the equation We can simplify this equation by subtracting 1 from both sides: \[ m \cdot \frac{\pi}{2} = n \] ### Conclusion Thus, the relation between \( m \) and \( n \) is: \[ n = m \cdot \frac{\pi}{2} \]

To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} mx + 1 & \text{if } x \leq \frac{\pi}{2} \\ \sin x + n & \text{if } x > \frac{\pi}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

If f(x)={m x+1\ \ \ ,\ \ \ xlt=pi/2,\ \ \ \ \ \sinx+n\ \ \ ,\ \ \ x >pi/2 is continuous at x=pi/2 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

If f(x)={(-4sinx+cosx, "for",xle-(pi)/2),(a sin x+b,"for",-(pi)/2ltxlt(pi)/2),(cosx+2,"for",xge(pi)/2):} is continuous, then

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

NCERT EXEMPLAR ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Objective type
  1. The function f(x) = e^(|x|) is

    Text Solution

    |

  2. if f(x)=x^2sin(1/x) , x!=0 then the value of the function f at x=0 so...

    Text Solution

    |

  3. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  4. If f(x) = |sinx|, then

    Text Solution

    |

  5. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  6. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  7. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |

  8. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  9. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  10. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |

  11. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  12. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  13. The set of points where the function f given by f(x) - |2x-1| sinx ...

    Text Solution

    |

  14. The function f(x) =cot x is discontinuous on set

    Text Solution

    |

  15. The function f(x) = e^(|x|) is

    Text Solution

    |

  16. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  17. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  18. If f(x) = |sinx|, then

    Text Solution

    |

  19. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |