Home
Class 12
MATHS
If y = log ((1-x^(2))/(1+x^(2))), then...

If ` y = log ((1-x^(2))/(1+x^(2)))`, then `(dy)/(dx)` is equal to

A

` (4x^(3))/(1-x^(4))`

B

`(-4x)/(1-x^(4))`

C

` (1)/(4-x^(4))`

D

`(-4x^(3))/(1-x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we will use the properties of logarithms and differentiation. Let's go through the solution step by step. ### Step 1: Rewrite the logarithm Using the property of logarithms that states \( \log\left(\frac{A}{B}\right) = \log(A) - \log(B) \), we can rewrite \( y \) as: \[ y = \log(1 - x^2) - \log(1 + x^2) \] ### Step 2: Differentiate \( y \) Now, we will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\log(1 - x^2)] - \frac{d}{dx}[\log(1 + x^2)] \] Using the derivative of \( \log(u) \), which is \( \frac{1}{u} \frac{du}{dx} \), we can differentiate each term: - For \( \log(1 - x^2) \): \[ \frac{d}{dx}[\log(1 - x^2)] = \frac{1}{1 - x^2} \cdot (-2x) = -\frac{2x}{1 - x^2} \] - For \( \log(1 + x^2) \): \[ \frac{d}{dx}[\log(1 + x^2)] = \frac{1}{1 + x^2} \cdot (2x) = \frac{2x}{1 + x^2} \] ### Step 3: Combine the derivatives Now, substituting these derivatives back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{2x}{1 - x^2} - \frac{2x}{1 + x^2} \] ### Step 4: Simplify the expression To combine these fractions, we need a common denominator: \[ \frac{dy}{dx} = -\frac{2x(1 + x^2) + 2x(1 - x^2)}{(1 - x^2)(1 + x^2)} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{2x(1 + x^2 + 1 - x^2)}{(1 - x^2)(1 + x^2)} = -\frac{2x(2)}{(1 - x^2)(1 + x^2)} = -\frac{4x}{(1 - x^2)(1 + x^2)} \] ### Step 5: Final simplification Notice that \( (1 - x^2)(1 + x^2) = 1 - x^4 \) (using the difference of squares): \[ \frac{dy}{dx} = -\frac{4x}{1 - x^4} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{4x}{1 - x^4} \]

To find the derivative of the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we will use the properties of logarithms and differentiation. Let's go through the solution step by step. ### Step 1: Rewrite the logarithm Using the property of logarithms that states \( \log\left(\frac{A}{B}\right) = \log(A) - \log(B) \), we can rewrite \( y \) as: \[ y = \log(1 - x^2) - \log(1 + x^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=log((1-x^(2))/(1+x^(2))),|x|lt1 , then (dy)/(dx) =

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

if y=(1+1/x^(2))/(1-1/(x)^(2)) ,then (dy)/(dx) is equal to

If y=x^(x^(2)), then (dy)/(dx) equals

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y=log((x^(2))/(e^(2))) then (d^(2)y)/(dx^(2)) equal to: a) -(1)/(x) b) -(1)/(x^(2)) c) (2)/(x^(2)) d) -(2)/(x^(2))

8.If .If y=x^(2)+(1)/(x^(2)+(1)/(x^(2)+x^(2)+...) ,then (dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

NCERT EXEMPLAR ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Objective type
  1. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  2. If f(x) = |sinx|, then

    Text Solution

    |

  3. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  4. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  5. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |

  6. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  7. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  8. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |

  9. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  10. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  11. The set of points where the function f given by f(x) - |2x-1| sinx ...

    Text Solution

    |

  12. The function f(x) =cot x is discontinuous on set

    Text Solution

    |

  13. The function f(x) = e^(|x|) is

    Text Solution

    |

  14. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  15. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  16. If f(x) = |sinx|, then

    Text Solution

    |

  17. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  18. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  19. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

    Text Solution

    |

  20. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |