Home
Class 12
MATHS
If f(x) = |cosx|, then f'(pi/4) is equal...

If `f(x) = |cosx|`, then `f'(pi/4)` is equal to `"……."`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'( \frac{\pi}{4} ) \) for the function \( f(x) = |\cos x| \), we will follow these steps: ### Step 1: Determine the expression for \( f(x) \) Since \( f(x) = |\cos x| \), we need to analyze when \( \cos x \) is positive or negative. ### Step 2: Analyze \( \cos x \) at \( x = \frac{\pi}{4} \) At \( x = \frac{\pi}{4} \), we calculate: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} > 0 \] Since \( \cos\left(\frac{\pi}{4}\right) \) is positive, we can write: \[ f(x) = \cos x \quad \text{for } x = \frac{\pi}{4} \] ### Step 3: Differentiate \( f(x) \) Since \( f(x) = \cos x \) in the neighborhood of \( x = \frac{\pi}{4} \), we can differentiate \( f(x) \): \[ f'(x) = -\sin x \] ### Step 4: Evaluate \( f'(\frac{\pi}{4}) \) Now, we substitute \( x = \frac{\pi}{4} \) into the derivative: \[ f'\left(\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) \] Calculating \( \sin\left(\frac{\pi}{4}\right) \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, \[ f'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] ### Final Answer \[ f'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] ---

To find \( f'( \frac{\pi}{4} ) \) for the function \( f(x) = |\cos x| \), we will follow these steps: ### Step 1: Determine the expression for \( f(x) \) Since \( f(x) = |\cos x| \), we need to analyze when \( \cos x \) is positive or negative. ### Step 2: Analyze \( \cos x \) at \( x = \frac{\pi}{4} \) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)= |cosxl, then f'((3pi)/4) equal to -

If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then "phi''((pi)/(4)) is equal to