Home
Class 12
MATHS
For the curve sqrt(x)+sqrt(y)=1 , (dy)/(...

For the curve `sqrt(x)+sqrt(y)=1` , `(dy)/(dx)` at `(1//4,\ 1//4)` is `1//2` (b) 1 (c) -1 (d) 2

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the curve \(\sqrt{x} + \sqrt{y} = 1\) at the point \(\left(\frac{1}{4}, \frac{1}{4}\right)\), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ \sqrt{x} + \sqrt{y} = 1 \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(\sqrt{y}) = \frac{d}{dx}(1) \] ### Step 2: Apply the differentiation rules Using the differentiation rule for square roots, we have: \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \] ### Step 3: Rearrange the equation Now, we can rearrange this equation to solve for \(\frac{dy}{dx}\): \[ \frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] Multiplying both sides by \(2\sqrt{y}\) gives: \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] ### Step 4: Substitute the point \(\left(\frac{1}{4}, \frac{1}{4}\right)\) Now we substitute \(x = \frac{1}{4}\) and \(y = \frac{1}{4}\) into the equation for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}} \] Calculating the square roots: \[ \frac{dy}{dx} = -\frac{\frac{1}{2}}{\frac{1}{2}} = -1 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at the point \(\left(\frac{1}{4}, \frac{1}{4}\right)\) is: \[ \frac{dy}{dx} = -1 \] ### Conclusion The correct option is (c) -1.

To find \(\frac{dy}{dx}\) for the curve \(\sqrt{x} + \sqrt{y} = 1\) at the point \(\left(\frac{1}{4}, \frac{1}{4}\right)\), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ \sqrt{x} + \sqrt{y} = 1 \] Differentiating both sides with respect to \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

For the curve sqrt(x)+sqrt(y)=1 , (dy)/(dx) at (1//4,\ 1//4) is (a) 1//2 (b) 1 (c) -1 (d) 2

If sqrt(x) + sqrt(y)=4, f i n d (dx/dy) a t (y = 1).

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If x=sqrt(1-y^2) , then (dy)/(dx)=

If e^x=(sqrt(1+t)-sqrt(1-t))/(sqrt(1+t)+sqrt(1-t))a and tany/2=sqrt((1-t)/(1+t)) ,then (dy)/(dx) at t=1/2 is (a) -1/2 (b) 1/2 (c) 0 (d) none of these

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

Area common to the curves y=sqrt(x) and x=sqrt(y) is (A) 1 (B) 2/3 (C) 1/3 (D) none of these

Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a) 1/(2y-1) (b) x/(x+2y) (c) 1/(sqrt(1+4x) (d) y/(2x+y)

Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to 1/(2y-1) (b) x/(x+2y) 1/(sqrt(1+4x) (d) y/(2x+y)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)