Home
Class 12
MATHS
If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] the...

If `A=[{:(1,0,-1),(2,1,3),(0,1, 1):}]` then verify that `A^(2)+A=A(A+I)` , where I is `3xx3` unit matrix.

Text Solution

AI Generated Solution

To verify the equation \( A^2 + A = A(A + I) \), where \( A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix} \) and \( I \) is the \( 3 \times 3 \) identity matrix, we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I , where I is a 2 xx 2 unit matrix.

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.

NCERT EXEMPLAR ENGLISH-MATRICES-Solved example
  1. If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}]=A, then ...

    Text Solution

    |

  2. If A=[{:(2, 1,),(4,2,)],B =[{:(2,3,4),(1,4,0):}] and C=[{:(-1,2,1),(1,...

    Text Solution

    |

  3. If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) ,...

    Text Solution

    |

  4. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  5. If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}], then varif...

    Text Solution

    |

  6. Show that A' A and A A' are both symmetric matrices for any matrix A.

    Text Solution

    |

  7. Let A and B be square matrices of the order 3xx3 . Is (A B)^2=A^2B^...

    Text Solution

    |

  8. Show that , if A and B are square matrices such that AB=BA, then (A+B)...

    Text Solution

    |

  9. If A=[{:(1,2),(-1,3):}]B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}] a=4 an...

    Text Solution

    |

  10. If A=[{:(cos q,sin q),(-sin q, cos q):}] , then variefy that A^(2)=[{:...

    Text Solution

    |

  11. If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  12. Verify that A^(2)=I, when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]

    Text Solution

    |

  13. If A is a square matrix, using mathematical induction prove that (A...

    Text Solution

    |

  14. Find inverse, by elementary row operations (if possible) , of both fo...

    Text Solution

    |

  15. If [{:(xy,4),(z+6,x+y):}]=[{:(8,w),(0,6):}], then find the values of x...

    Text Solution

    |

  16. If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C ...

    Text Solution

    |

  17. If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I.

    Text Solution

    |

  18. Find the values of a,b,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2...

    Text Solution

    |

  19. Find the matrix A such that [{:(2,-1), (1,0),(-3,4):}]A=[{:(-1,-8,-10)...

    Text Solution

    |

  20. If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I.

    Text Solution

    |