Home
Class 12
MATHS
Let A and B be square matrices of the...

Let `A` and `B` be square matrices of the order `3xx3` . Is `(A B)^2=A^2B^2` ? Give reasons.

Text Solution

AI Generated Solution

To determine whether \((AB)^2 = A^2B^2\) for square matrices \(A\) and \(B\) of order \(3 \times 3\), we can start by expanding both sides of the equation. ### Step 1: Expand \((AB)^2\) \[ (AB)^2 = AB \cdot AB \] Using the associative property of matrix multiplication, we can rearrange this as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos

Similar Questions

Explore conceptually related problems

If A and B are square matrices of order 3, then

If A and B are square matrices of the same order then (A+B)^2=A^2+2AB+B^2 implies

Let A and B be square matrices of the same order. Does (A+B)^2=A^2+2A B+B^2 hold? If not, why?

If A and B are two square matrices of the same order, then A+B=B+A.

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

Let A and B be square matrices of the same order such that A^(2)=I and B^(2)=I , then which of the following is CORRECT ?

If A and B are square matrices of same order, then (A+B) (A-B) is equal to

if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (A+B)^7=

If A and B are square matrices of the same order, explain, why in general (A+B)^2!=A^2+2A B+B^2 (ii) (A-B)^2!=A^2-2A B+B^2 (iii) (A+B)(A-B)!=A^2-B^2 .

State with reason, whether the following are true of false. A, B and C are matrices of order 2 xx 2 . (A-B)^2=A^2-2A. B+B^2 .

NCERT EXEMPLAR ENGLISH-MATRICES-Solved example
  1. If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}], then varif...

    Text Solution

    |

  2. Show that A' A and A A' are both symmetric matrices for any matrix A.

    Text Solution

    |

  3. Let A and B be square matrices of the order 3xx3 . Is (A B)^2=A^2B^...

    Text Solution

    |

  4. Show that , if A and B are square matrices such that AB=BA, then (A+B)...

    Text Solution

    |

  5. If A=[{:(1,2),(-1,3):}]B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}] a=4 an...

    Text Solution

    |

  6. If A=[{:(cos q,sin q),(-sin q, cos q):}] , then variefy that A^(2)=[{:...

    Text Solution

    |

  7. If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  8. Verify that A^(2)=I, when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]

    Text Solution

    |

  9. If A is a square matrix, using mathematical induction prove that (A...

    Text Solution

    |

  10. Find inverse, by elementary row operations (if possible) , of both fo...

    Text Solution

    |

  11. If [{:(xy,4),(z+6,x+y):}]=[{:(8,w),(0,6):}], then find the values of x...

    Text Solution

    |

  12. If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C ...

    Text Solution

    |

  13. If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I.

    Text Solution

    |

  14. Find the values of a,b,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2...

    Text Solution

    |

  15. Find the matrix A such that [{:(2,-1), (1,0),(-3,4):}]A=[{:(-1,-8,-10)...

    Text Solution

    |

  16. If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I.

    Text Solution

    |

  17. If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A'...

    Text Solution

    |

  18. If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, the...

    Text Solution

    |

  19. If P(x)=[(cosx, sinx),(-sinx, cosx)], then show that P(x).P(y)=P(x+y)=...

    Text Solution

    |

  20. If A is square matrix such that A^(2)=A, then show that (I+A)^(3)=7A+I...

    Text Solution

    |