Home
Class 12
MATHS
If A is a square matrix, using mathem...

If `A` is a square matrix, using mathematical induction prove that `(A^T)^n=(A^n)^T` for all `n in N` .

Text Solution

Verified by Experts

Let `P(n): (A)^(n)=(A^(n))`
`therefore P(1):(A)^(1)=(A)`
`rArr A=ArArrP(1)` is true
Now, `P(k):(A)^(n)=(A^(k))`
where `k in N`
and `P(k+1) .(A)^(k+1)=(A^(k+1))`
Where `P(k+1)` is true whenever P (k) is true.
`therefore P(k+1)(A)^(k),(A)^(1)= [A^(k+1)]`
`(A^(k)) ,(A)=[A^(k+1)]`
`(A.A^(k))=[A^(k+1)]`
`(A^(k+1))=[A^(k+1)]`
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that : d/(dx)(x^n)=n x^(n-1) for all n in NN .

Using the principle of mathematical induction, prove that n<2^n for all n in N

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

Using Mathematical induction, prove that 10 ^(n)+3.4^(n+2)+5 is divisible by 9 for all ninN .

Using mathemtical induction prove that 3^(2n + 2)- 8n - 9 is divisible by 64 for all n in N .

Using mathematical induction, to prove that 1*1!+2*2!+3.3!+ . . . .+n*n! =(n+1)!-1 , for all n in N

By using principle of mathematical induction, prove that 2+4+6+….2n=n(n+1), n in N

Using mathematical induction prove that n^(3)-7n+3 is divisible by 3, AA n in N

Using mathematical induction , to prove that 7^(2n)+2^(3n-3). 3^(n-1) is divisible by 25 , for al n in N

Prove by the principle of mathematical induction that n<2^n"for all"n in Ndot

NCERT EXEMPLAR ENGLISH-MATRICES-Solved example
  1. If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  2. Verify that A^(2)=I, when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]

    Text Solution

    |

  3. If A is a square matrix, using mathematical induction prove that (A...

    Text Solution

    |

  4. Find inverse, by elementary row operations (if possible) , of both fo...

    Text Solution

    |

  5. If [{:(xy,4),(z+6,x+y):}]=[{:(8,w),(0,6):}], then find the values of x...

    Text Solution

    |

  6. If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C ...

    Text Solution

    |

  7. If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I.

    Text Solution

    |

  8. Find the values of a,b,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2...

    Text Solution

    |

  9. Find the matrix A such that [{:(2,-1), (1,0),(-3,4):}]A=[{:(-1,-8,-10)...

    Text Solution

    |

  10. If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I.

    Text Solution

    |

  11. If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A'...

    Text Solution

    |

  12. If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, the...

    Text Solution

    |

  13. If P(x)=[(cosx, sinx),(-sinx, cosx)], then show that P(x).P(y)=P(x+y)=...

    Text Solution

    |

  14. If A is square matrix such that A^(2)=A, then show that (I+A)^(3)=7A+I...

    Text Solution

    |

  15. If A, B are square matrices of same order and B is skew-symmetric mat...

    Text Solution

    |

  16. Let A ,B be two matrices such that they commute. Show that for any pos...

    Text Solution

    |

  17. Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

    Text Solution

    |

  18. Using elementary transformations (operations), find the inverse of the...

    Text Solution

    |

  19. Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a ...

    Text Solution

    |

  20. The matrix P=[{:(0,0,4),(0,4,0),(4,0,0):}] is a

    Text Solution

    |