Home
Class 12
MATHS
Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] sat...

Find `A=[(0,2y,z),(x,y,-z),(x,-y,z)]` satisfies `A^(T) = A^(-1)`

Text Solution

Verified by Experts

We have `A=[{:(0,2y,z),(x,-y,z):}]` and `A=[{:(0,x,x),(2y,y,-y),(z,-z,z):}]`
By using elementary row transformation, we get
`rArr [{:(0,2y,z),(x,y,-z),(x,-y,z):}]=[{:(1,0,0),(0,1,0),(0,0,1):}]A`
`rArr [{:(0,2y,z),(x,y,-z),(0,2y,2z):}]=[{:(1,0,0),(0,1,0),(0,-1,1):}]A [because R_(3)rArrR_(3)-R_(2)]`
`rArr [{:(0,2y,z),(x,3y,0),(0,0,3z):}]=[{:(1,0,0),(1,1,0),(1,-1,1):}]A [{:(becauseR_(3)rArrR_(3),+R_(1)),("and"R_(2)rArrR_(2),+R_(1)):}]`
`rArr [{:(-x,-y-z),(x,3y,0),(0,0,z):}]=[{:(0,-1,0),(1,1,0),((1)/(3),(-1)/(3),(1)/(3)):}]A[because R_(1)rArrR_(1)-R_(2)` and `R_(3)rArr(1)/(3)R_(3)`]
`rArr[{:(-x,-y,0),(x,3y,0),(0,0,z):}]=[{:((-1)/(3),(-2)/(3),(-1)/(3)),(1,1,0),((1)/(3),(-1)/(3),(1)/(3)):}]A [because R_(10rArrR_(1)-R_(3)]`
`rArr [{:(-x,-y,0),(0,2y,0),(0,0,z):}]=[{:((-1)/(3),(-2)/(3),(-1)/(3)),((2)/(3),(1)/(3),(-1)/(3)),((1)/(3),(-1)/(3),(1)/(3)):}]A[because R_(2)rArrR_(2)+R_(1)]`
`rArr[{:(-x,0,0),(0,2y,0),(0,0z):}]=[{:(0,(-1)/(2),(-1)/(2)),((2)/(3),(1)/(3),(-1)/(3)),((1)/(3),(-1)/(3),(1)/(3)):}]A[because R_(1)rArrR_(1)+(1)/(2)R_(2)]`
`rArr [{:(1,0,0),(0,1,0),(0,0,1):}]=[{:(0,(1)/(2x),(1)/(2x)),((1)/(3y),(1)/(6y),(-1)/(6y)),((1)/(3z),(-1)/(3z),(1)/(3z)):}]A[because R_(1)rArr(-1)/(x)R_(1)R_(2)rArr(1)/(2y)R_(2) "and" R_(3)rArr(1)/(2)R_(3)]`
`[{:(0,(1)/(2x),(1)/(2x)),((1)/(3y),(1)/(6 y)),(-1)/(6y)),((1)/(3z),(-1)/(3z),(1)/(3z)):}]=[{:(0,x,x),(2y,y,-y),(z,-z,z):}]`
`rArr (1)/(2x)=xrArr=+-(1)/sqrt(2)`
`rArr (1)/(6y)=yrArry=+-(1)/sqrt(6)`
and `(1)/(3z)=zrArrz=+-(1)/sqrt(3)`
Alternate method
We have, `A=[{:(0,2y,z),(x,y,-z),(x,-y,-z),(x,-y,z):}]` and `A=[{:(0,x,x),(2y,y, -y),(z,-z,z):}]`
Also, `A'=A^(-1)`'
`rArr A A'=A A^(-1) [because A A^(-1)=I]`
`rArr A A=I`
`rArr [{:(0,2y,z),(x,y,-2),(x,y,-z),(x,-y,z):}][{:(0,x,x),(2y,y,-y),(z,-z,z):}]=[{:(1,0,0),(0,1,0),(0,0,1):}]`
`rArr[{:(4y^(2)+z^(2),2y^(2)-z^(2),-2y^(2)+z^(2)),(2y^(2)-z^(2),x^(2)+y^(2)+z^(2),x^(2)-y^(2)-z^(2)),(-2y^(2)+z^(2),x^(2)-y^(2)-z^(2),x^(2)+y^(2)+z^(3)):}]=[{:(1,0,0),(0,1,0),(0,0,1):}]`
`rArr 2y^(2)-z^(2)=0rArr2y^(2)=z^(2)`
`rArr 4y^(2)+z^(2)=1`
`rArr 2.z^(2)+z^(2)=1`
`z=+-(1)/sqrt(3)`
`therefore y^(2)=(z^(2))/(2)rArry=+-(1)/sqrt(6)`
Also, `x^(2)+y^(2)+z^(2)=1`
`rArr x^(2)=1-y^(2)-z^(2)=1-(1)/(6)-(1)/(3)`
`=1-(3)/(6)=(1)/(2)`
`rArr x=+-(1)/sqrt(2)`
`therefore x=+-(1)/sqrt(2).y=+-(1)/sqrt(6)`
and `z=+-(1)/sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x ,\ y ,\ zdot

Find the value of y, if the matrix A = ((0,2y,z),(x,y,-z),(x,-y,z)) obeys the law A^(T).A = I .

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

Find the values of x,y,z if the matrix A=[[0,2y,z],[x,y,-z],[x,-y,z]] satisfy the equation A^T A=I_3

Find the values of x, y, z if the matrix A=[[0, 2y, z],[ x, y,-z],[ x,-y, z]] satisfy the equation A^(prime)A=I .

If matrix A=[02 y z x y-zx-yz] satisfies AT = A-1, then find the value of x, y, z.

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

Find the values of x ,\ \ y\ ,\ z if the matrix A=[0 2y z x y-z x-y z] satisfy the equation A^T\ A=I_3 .

An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfying x^(2)+y^(2)+z^(2) + 2xyz=1 is

NCERT EXEMPLAR ENGLISH-MATRICES-Solved example
  1. If A, B are square matrices of same order and B is skew-symmetric mat...

    Text Solution

    |

  2. Let A ,B be two matrices such that they commute. Show that for any pos...

    Text Solution

    |

  3. Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

    Text Solution

    |

  4. Using elementary transformations (operations), find the inverse of the...

    Text Solution

    |

  5. Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a ...

    Text Solution

    |

  6. The matrix P=[{:(0,0,4),(0,4,0),(4,0,0):}] is a

    Text Solution

    |

  7. Total number of possible matrices of order 3xx3 with each entry 2 or 0...

    Text Solution

    |

  8. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  9. If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and ...

    Text Solution

    |

  10. If A and B are two matrices of the order 3 xx m and 3 xx n, respective...

    Text Solution

    |

  11. If A=[{:(0,1),(1,0):}] then A^(2) is equal to

    Text Solution

    |

  12. If matrix A=[a(ij)](2X2), where a(ij)={[1,i!=j],[0,i=j]}, then A^2 i...

    Text Solution

    |

  13. The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

    Text Solution

    |

  14. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  15. If A is matrix of order mxxn and B is a matrix such that AB' and B'A ...

    Text Solution

    |

  16. if A and B are matrices of same order, then (AB'-BA') is a 1) null mat...

    Text Solution

    |

  17. If A is a square matrix such that A^(2)= I, then (A-I)^(3)+(A+I)^(3)...

    Text Solution

    |

  18. For any two matrices A and B , we have

    Text Solution

    |

  19. On usign elementry column operation C(2)rArrC(2)-2C(1) in the followin...

    Text Solution

    |

  20. On using row operation R(1)rArrR(1)-3R(2) in the following matrix equa...

    Text Solution

    |