Home
Class 12
MATHS
Using elementary transformations (operat...

Using elementary transformations (operations), find the inverse of the following matrices, if it exists `[(2,-1,3),(-5,3,1),(-3,2,3)]`

Text Solution

Verified by Experts

For getting the inverse of the given matrix A by row elementary operations we may write the given matrix as
A=IA
(i) `because [{:(2,-1,3),(-5,3,1),(-3,2,0):}]=[{:(1,0,0),(0,1,0),(0,0,1):}]A`
`rArr [{:(2,-1,3),(-3, 2,4),(-3,2,3):}]=[{:(1,0,0),(1,1,0),(0,0,1):}]A [because R_(2)rArrR_(2)+R_(1)]`
`rArr[{:(2,-1,3):}]=[{:(1,0,0),(1,1,0),(0, 0,1):}]A[becauseR_(3)rArrR_(3)-R_(2)]`
`rArr [{:(-1,1,7),(-3,2,4),(0,0,-1):}]=[{:(2,1,0),(-5,-2,0),(-1,-1,1):}]A[because R_(2)rArrR_(2)-3R_(1)]`
`rArr[{:(-1,0,-10),(0,-1,-17),(0,0,1):}]=[{:(-3,-1,0),(-5,-2,0),(1,1,-1):}]A[because R_(1)rArrR_(1)+R_(2)"and" R_(3)rArr-1.R_(3)]`
`rArr[{:(1,0,0),(0,1,0),(0,0 ,1):}]=[{:(-7,-9,10),(1,1, -1):}]A[because R_(1)rArr-1R_(1) "and" R_(2)rArr-1R_(2)]`
So, the inverse of A is `=[{:(-7,-9,10),(-12,-15,17),(1,1,-1):}]`
(ii) `therefore [{:(2,3,-3),(-1,-2,2),(1,1,-1):}]=[{:(1,0,0),(0,1,0),(0,0,1):}]A`
`rArr [{:(0,1,-1), (0,-1,1),(1,1,-1):}]=[{:(1,0,-2),(0,1,1),(0,0,1):}]A [because R_(2)rArrR_(2)+R_(3) "and" R_(1)rArrR_(1)-2R_(3)]`
`rArr[{:(0,1,-1),(0,0,0),(1,1,1):}]=[{,(1,0,-2),(2,1,-2),(0,0,1):}] [because R_(2)rArrR_(2)+R_(1)]`
Since, second row of the matrix A on LHS is containing all zeroes, so we can say that inverse of matrix A does not exist.
(iii) `therefore [{:(2,0,-1),(5,1,0),(0,1,3):}]=[{:(1,0,0),(0,1,0),(0,0, 1):}]A`
`rArr[{:(2,0,-1),(3,1,1),(0,1,3):}]=[{:(1,0,0),(-1,1,0),(0,0,1):}]A[because R_(2)rArrR_(2)-R_(1)]`
`rArr [{:(2,0,-1),(1,1,2),(2,1,2):}]=[{:(1,0,0),((-5)/(2),1,0),(2, 0,1):}]A[because R_(3)rArrR_(3)+R_(1)"and" R_(2)rArrR_(2)-(1)/(2)R_(1)]`
`rArr[{:(2,0,(-1),(0,1,(5)/(2)),(0,1,3):}]=[{:(1,0,0),((-5)/(2),1,0),(0,0,1):}][because R_(3)rArrR_(3)-2R_(1)]`
`rArr [{:(1,0,(-1)/(2)),(0,1,(5)/(2)),(0,0,1):}]=[{:(because R_(1)rArr(1)/(2)R_(1) "and" R_(3)rArr2R_(3)]`
`rArr [{:(1,0,0),(0,1,0),(0,0,1):}]=[{:(3,-1,1),(-15,6,-5),(5,-2,2):}]A[{:(because R_(1)rArrR_(1)R_(1)+(1)/(2)R_(3) "and" R_(2)rArrR_(2)-(5)/(2)R_(3)]`
Hence, `[{:(3,-1,1),(-15,6,-5),(5,-2,2):}]` is the inverse of given matrix A.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformtions (operations), find the inverse of the following matrices, if it exists: [[3,9],[1,3]]

Ussing elementary transformtions (operations), find the inverse of the following mtrices, if it exists: [[2,-3],[-1,2]]

Using elementary transformtions (operations), find the inverse of the following matrices, if it exists: [[1/2,2/5],[2/5,- 1/5]]

Using elementary row operations, find the inverse of the following matrix: [[2,5],[1, 3]]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of each of the matrices [[2,-6],[ 1,-2]]

Using elementary transformations, find the inverse of the matrix [[3, 1], [5, 2]]

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[2,-3],[-1, 2]]

NCERT EXEMPLAR ENGLISH-MATRICES-Solved example
  1. Let A ,B be two matrices such that they commute. Show that for any pos...

    Text Solution

    |

  2. Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

    Text Solution

    |

  3. Using elementary transformations (operations), find the inverse of the...

    Text Solution

    |

  4. Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a ...

    Text Solution

    |

  5. The matrix P=[{:(0,0,4),(0,4,0),(4,0,0):}] is a

    Text Solution

    |

  6. Total number of possible matrices of order 3xx3 with each entry 2 or 0...

    Text Solution

    |

  7. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  8. If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and ...

    Text Solution

    |

  9. If A and B are two matrices of the order 3 xx m and 3 xx n, respective...

    Text Solution

    |

  10. If A=[{:(0,1),(1,0):}] then A^(2) is equal to

    Text Solution

    |

  11. If matrix A=[a(ij)](2X2), where a(ij)={[1,i!=j],[0,i=j]}, then A^2 i...

    Text Solution

    |

  12. The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

    Text Solution

    |

  13. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  14. If A is matrix of order mxxn and B is a matrix such that AB' and B'A ...

    Text Solution

    |

  15. if A and B are matrices of same order, then (AB'-BA') is a 1) null mat...

    Text Solution

    |

  16. If A is a square matrix such that A^(2)= I, then (A-I)^(3)+(A+I)^(3)...

    Text Solution

    |

  17. For any two matrices A and B , we have

    Text Solution

    |

  18. On usign elementry column operation C(2)rArrC(2)-2C(1) in the followin...

    Text Solution

    |

  19. On using row operation R(1)rArrR(1)-3R(2) in the following matrix equa...

    Text Solution

    |

  20. ......... Matrix is both symmetric and skew-symmetric matrix.

    Text Solution

    |