Home
Class 12
MATHS
On usign elementry column operation C(2)...

On usign elementry column operation `C_(2)rArrC_(2)-2C_(1)` in the following matrix equation `[{:(1,-3),(2,4):}]=[{:(1,01),(0,1):}][{:(3,1),(2,4):}]` , we have

A

`[{:(1,-5),(0,4):}]=[{:(1,-1),(-2,2):}][{:(3,-5),(2,0):}]`

B

`[{:(1,-5),(0,4):}]=[{:(1,-1),(0,1):}][{:(3,-5),(-0,2):}]`

C

`[{:(1,-5),(2,0):}]=[{:(1,-3),(0,1):}][{:(3,1),(2,4):}]`

D

`[{:(1,-5),(2,0):}] =[{:(1,-1),(0,1):}][{:(3,-5),(2,0):}]`

Text Solution

AI Generated Solution

To solve the matrix equation given the elementary column operation \( C_2 \rightarrow C_2 - 2C_1 \), we will perform the operation step by step on both the left-hand side (LHS) and the right-hand side (RHS) of the equation. ### Given Matrix Equation: \[ \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos

Similar Questions

Explore conceptually related problems

On using row operation R_(1)rArrR_(1)-3R_(2) in the following matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}] we have

Use elementary column operation C_2->C_2+2C_1 in the following matrix equation : [(2,1),(2, 0)] = [(3,1),(2,0)][(1,0),(-1, 1)]

Use elementary column operation C_2->C_2+2C_1 in the following matrix equation : [(2 ,1),( 2, 0)]=[(3 ,1),( 2 ,0)][(1 ,0),(-1, 1)]

On using the elementary row operation R_(1) to R_(1)-3R_(2) in the matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}] [{:(2,0),(1,1):}] we get

Use elementary column operation C2 -> C2 -2C1 in the matrix equation [[4 ,2],[ 3, 3]]=[[1, 2 ],[0, 3]][[2 ,0],[ 1 ,1]]

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

NCERT EXEMPLAR ENGLISH-MATRICES-Solved example
  1. If A is a square matrix such that A^(2)= I, then (A-I)^(3)+(A+I)^(3)...

    Text Solution

    |

  2. For any two matrices A and B , we have

    Text Solution

    |

  3. On usign elementry column operation C(2)rArrC(2)-2C(1) in the followin...

    Text Solution

    |

  4. On using row operation R(1)rArrR(1)-3R(2) in the following matrix equa...

    Text Solution

    |

  5. ......... Matrix is both symmetric and skew-symmetric matrix.

    Text Solution

    |

  6. Sum of two skew-symmetric matrices is always ......... Matrix.

    Text Solution

    |

  7. The negative of a matrix is obtained b y multiplying it by ...........

    Text Solution

    |

  8. The product of any matrix by the scalar ......... Is the null matrix.

    Text Solution

    |

  9. A matrix which is not a square matrix is called a..........matrix.

    Text Solution

    |

  10. Matrix multiplication is distributive over matrix addition

    Text Solution

    |

  11. If A is a symmetric matrix , then A^(3) is a ........ Matrix.

    Text Solution

    |

  12. If A is a skew-symmetric matrix, then A^(2) is a .................

    Text Solution

    |

  13. If A and B are square matrices of the same order, then (i) (AB)=.......

    Text Solution

    |

  14. If A is a skew-symmetric, then kA is a...........(where, k is any scal...

    Text Solution

    |

  15. If A and B are symmetric matrices, then (i) AB-BA is a .......... ...

    Text Solution

    |

  16. If A is symmetric matrix, then B'AB is............

    Text Solution

    |

  17. If A and B are symmetric matrices of same order, then AB is symmetric ...

    Text Solution

    |

  18. In applying one or more row operations while finding A^(-1) by elemen...

    Text Solution

    |

  19. A matrix denotes a number

    Text Solution

    |

  20. Matrices of any order can be added.

    Text Solution

    |