Home
Class 12
MATHS
Examine contnuity of the function f(x)...

Examine contnuity of the function `f(x) = x^(3) + 2x^(2)- 1` at `x = 1`.

Text Solution

AI Generated Solution

The correct Answer is:
To examine the continuity of the function \( f(x) = x^3 + 2x^2 - 1 \) at \( x = 1 \), we need to check if the following condition holds: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] ### Step 1: Calculate \( f(1) \) First, we calculate the value of the function at \( x = 1 \): \[ f(1) = 1^3 + 2(1^2) - 1 = 1 + 2 - 1 = 2 \] ### Step 2: Calculate the Left-Hand Limit \( \lim_{x \to 1^-} f(x) \) Next, we calculate the left-hand limit as \( x \) approaches 1: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^3 + 2x^2 - 1) \] Substituting \( x = 1 - h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} ((1 - h)^3 + 2(1 - h)^2 - 1) \] Calculating \( (1 - h)^3 \) and \( (1 - h)^2 \): \[ (1 - h)^3 = 1 - 3h + 3h^2 - h^3 \] \[ (1 - h)^2 = 1 - 2h + h^2 \] Thus, \[ f(1 - h) = (1 - 3h + 3h^2 - h^3) + 2(1 - 2h + h^2) - 1 \] Simplifying this: \[ = 1 - 3h + 3h^2 - h^3 + 2 - 4h + 2h^2 - 1 \] \[ = 2 - 7h + 5h^2 - h^3 \] Taking the limit as \( h \to 0 \): \[ \lim_{h \to 0} (2 - 7h + 5h^2 - h^3) = 2 \] So, \[ \lim_{x \to 1^-} f(x) = 2 \] ### Step 3: Calculate the Right-Hand Limit \( \lim_{x \to 1^+} f(x) \) Now, we calculate the right-hand limit as \( x \) approaches 1: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^3 + 2x^2 - 1) \] Substituting \( x = 1 + h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} ((1 + h)^3 + 2(1 + h)^2 - 1) \] Calculating \( (1 + h)^3 \) and \( (1 + h)^2 \): \[ (1 + h)^3 = 1 + 3h + 3h^2 + h^3 \] \[ (1 + h)^2 = 1 + 2h + h^2 \] Thus, \[ f(1 + h) = (1 + 3h + 3h^2 + h^3) + 2(1 + 2h + h^2) - 1 \] Simplifying this: \[ = 1 + 3h + 3h^2 + h^3 + 2 + 4h + 2h^2 - 1 \] \[ = 2 + 7h + 5h^2 + h^3 \] Taking the limit as \( h \to 0 \): \[ \lim_{h \to 0} (2 + 7h + 5h^2 + h^3) = 2 \] So, \[ \lim_{x \to 1^+} f(x) = 2 \] ### Step 4: Conclusion Since we have: \[ \lim_{x \to 1^-} f(x) = 2, \quad \lim_{x \to 1^+} f(x) = 2, \quad \text{and} \quad f(1) = 2 \] We conclude that: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] Thus, the function \( f(x) \) is continuous at \( x = 1 \).

To examine the continuity of the function \( f(x) = x^3 + 2x^2 - 1 \) at \( x = 1 \), we need to check if the following condition holds: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] ### Step 1: Calculate \( f(1) \) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Examine continuity of the function f(x) = x^(3) + 2x^(2)- 1 at x = 1 .

Examine the continuity of the function f(x)=2x^2-1 at x = 3 .

Examine the continuity of the function f(x)={3x-2,\ \ \ xlt=0x+1,\ \ \ x >0 at x=0 . Also sketch the graph of this function.

Examine the continuity of the function f(x)=3x-2,xlt=0 , f(x)=x+1,x>0" at x=0 Also sketch the graph of this function.

Domain of the function f(x)= sin^(- 1)(1+3x+2x^2)

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^2)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is