Home
Class 12
MATHS
f(x)={{:(3x+5, if x ge 2),(x^(3), if x...

`f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):}`at `x = 2`

A

`f(x)` is dicontinuous at `x = 2`.

B

`f(x)` is continuous at `x = 2`.

C

Can not be determined

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is continuous at \( x = 2 \), we need to check the left-hand limit, the right-hand limit, and the value of the function at that point. The function is defined as: \[ f(x) = \begin{cases} 3x + 5 & \text{if } x > 2 \\ x^3 & \text{if } x \leq 2 \end{cases} \] ### Step 1: Find the left-hand limit as \( x \) approaches 2. The left-hand limit is given by: \[ \lim_{x \to 2^-} f(x) \] Since we are considering values of \( x \) that are less than or equal to 2, we use the definition of \( f(x) \) for \( x \leq 2 \): \[ f(x) = x^3 \] Now, we calculate the limit: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2} x^3 = 2^3 = 8 \] ### Step 2: Find the right-hand limit as \( x \) approaches 2. The right-hand limit is given by: \[ \lim_{x \to 2^+} f(x) \] For values of \( x \) greater than 2, we use the definition of \( f(x) \) for \( x > 2 \): \[ f(x) = 3x + 5 \] Now, we calculate the limit: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2} (3x + 5) = 3(2) + 5 = 6 + 5 = 11 \] ### Step 3: Check the value of the function at \( x = 2 \). Since \( f(x) \) is defined for \( x \leq 2 \) as \( x^3 \): \[ f(2) = 2^3 = 8 \] ### Step 4: Compare the limits and the function value. We have: - Left-hand limit: \( \lim_{x \to 2^-} f(x) = 8 \) - Right-hand limit: \( \lim_{x \to 2^+} f(x) = 11 \) - Value of the function at \( x = 2 \): \( f(2) = 8 \) Since the left-hand limit (8) is not equal to the right-hand limit (11), we conclude that: \[ \text{The function } f(x) \text{ is discontinuous at } x = 2. \] ### Final Answer: The function \( f(x) \) is discontinuous at \( x = 2 \). ---

To determine whether the function \( f(x) \) is continuous at \( x = 2 \), we need to check the left-hand limit, the right-hand limit, and the value of the function at that point. The function is defined as: \[ f(x) = \begin{cases} 3x + 5 & \text{if } x > 2 \\ x^3 & \text{if } x \leq 2 ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 . Examine the differentiability

f(x){{:(x^(3) - 3"," if x le 2 ),(x^(2) + 1"," if x gt 2 ):} Check continuity of f(x) at x = 2

The relation f is defined by f(x) ={(3x+2", "0le x le2),(x^(3)", "2 le x le 5):}. The relation g is defined by g(x) ={(3x+2", "0le x le1),(x^(3)", "1 le x le 5):} Show that f is a function and g is not a function

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is