Home
Class 12
MATHS
f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5...

` f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):}` at `x = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is continuous at \( x = 0 \), we need to check the left-hand limit and see if it equals \( f(0) \). The function is defined as: \[ f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 \end{cases} \] ### Step 1: Find the left-hand limit as \( x \) approaches 0. We need to calculate: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos(2x)}{x^2} \] ### Step 2: Substitute \( x \) with \( -h \) (where \( h \to 0^+ \)). This gives us: \[ \lim_{h \to 0^+} \frac{1 - \cos(-2h)}{(-h)^2} = \lim_{h \to 0^+} \frac{1 - \cos(2h)}{h^2} \] ### Step 3: Use the identity for \( \cos(2h) \). Recall that: \[ 1 - \cos(2h) = 2 \sin^2(h) \] Thus, we can rewrite the limit: \[ \lim_{h \to 0^+} \frac{2 \sin^2(h)}{h^2} \] ### Step 4: Simplify the limit. This can be simplified using the limit property: \[ \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \] So we have: \[ \lim_{h \to 0^+} \frac{2 \sin^2(h)}{h^2} = 2 \cdot \left( \lim_{h \to 0} \frac{\sin(h)}{h} \right)^2 = 2 \cdot 1^2 = 2 \] ### Step 5: Compare the left-hand limit to \( f(0) \). We found that: \[ \lim_{x \to 0^-} f(x) = 2 \] And since \( f(0) = 5 \), we see that: \[ \lim_{x \to 0^-} f(x) \neq f(0) \] ### Conclusion Since the left-hand limit does not equal \( f(0) \), the function \( f(x) \) is discontinuous at \( x = 0 \). ### Final Answer The function \( f(x) \) is discontinuous at \( x = 0 \). ---

To determine whether the function \( f(x) \) is continuous at \( x = 0 \), we need to check the left-hand limit and see if it equals \( f(0) \). The function is defined as: \[ f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0", " x= 0):}, at x=0

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .