Home
Class 12
MATHS
f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne ...

`f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):}` at `x = 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is continuous at \( x = 2 \), we need to check the following: 1. The left-hand limit as \( x \) approaches 2. 2. The right-hand limit as \( x \) approaches 2. 3. The value of the function at \( x = 2 \). The function is defined as: \[ f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2} & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 \end{cases} \] ### Step 1: Find the left-hand limit as \( x \) approaches 2. We calculate the left-hand limit: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{2x^2 - 3x - 2}{x - 2} \] ### Step 2: Substitute \( x = 2 - h \) (where \( h \to 0 \)). This gives: \[ \lim_{h \to 0} f(2 - h) = \lim_{h \to 0} \frac{2(2 - h)^2 - 3(2 - h) - 2}{(2 - h) - 2} \] ### Step 3: Simplify the expression. Calculating \( (2 - h)^2 \): \[ (2 - h)^2 = 4 - 4h + h^2 \] Substituting this back into the limit: \[ = \lim_{h \to 0} \frac{2(4 - 4h + h^2) - 3(2 - h) - 2}{-h} \] \[ = \lim_{h \to 0} \frac{8 - 8h + 2h^2 - 6 + 3h - 2}{-h} \] \[ = \lim_{h \to 0} \frac{2h^2 - 5h}{-h} \] ### Step 4: Factor out \( h \) from the numerator. \[ = \lim_{h \to 0} \frac{h(2h - 5)}{-h} \] Cancelling \( h \) (as \( h \neq 0 \)): \[ = \lim_{h \to 0} -(2h - 5) = -(-5) = 5 \] ### Step 5: Find the value of the function at \( x = 2 \). From the definition of the function: \[ f(2) = 5 \] ### Step 6: Compare the left-hand limit and the value of the function. Since: \[ \lim_{x \to 2^-} f(x) = 5 \quad \text{and} \quad f(2) = 5 \] Both limits are equal. ### Conclusion: The function \( f(x) \) is continuous at \( x = 2 \). ---

To determine whether the function \( f(x) \) is continuous at \( x = 2 \), we need to check the following: 1. The left-hand limit as \( x \) approaches 2. 2. The right-hand limit as \( x \) approaches 2. 3. The value of the function at \( x = 2 \). The function is defined as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.

If f(x) = {{:((x^(2)-(a+2)x+2a)/(x-2)",",x ne 2),(" "2",",x = 2):} is continuous at x = 2, then a is equal to

If f(x) = (x+2)/( x-2) for all x ne 2 , find f' (-2) .

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}