Home
Class 12
MATHS
f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),...

`f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):}` at `x = a`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( f(x) \) is continuous at \( x = a \), we need to check the following conditions: 1. \( f(a) \) is defined. 2. The left-hand limit \( f(a^-) \) exists. 3. The right-hand limit \( f(a^+) \) exists. 4. \( f(a^-) = f(a) = f(a^+) \). Given the function: \[ f(x) = \begin{cases} |x| \sin\left(\frac{1}{x-a}\right) & \text{if } x \neq a \\ 0 & \text{if } x = a \end{cases} \] ### Step 1: Evaluate \( f(a) \) Since \( f(x) = 0 \) when \( x = a \): \[ f(a) = 0 \] ### Step 2: Evaluate the left-hand limit \( f(a^-) \) We need to find: \[ f(a^-) = \lim_{x \to a^-} f(x) = \lim_{x \to a^-} |x| \sin\left(\frac{1}{x-a}\right) \] As \( x \) approaches \( a \) from the left, \( |x| \) approaches \( |a| \) and \( \sin\left(\frac{1}{x-a}\right) \) oscillates between -1 and 1. Therefore, we can express this limit as: \[ \lim_{x \to a^-} |x| \sin\left(\frac{1}{x-a}\right) = |a| \cdot \lim_{x \to a^-} \sin\left(\frac{1}{x-a}\right) \] Since \( \sin\left(\frac{1}{x-a}\right) \) oscillates between -1 and 1, we have: \[ \lim_{x \to a^-} |x| \sin\left(\frac{1}{x-a}\right) = 0 \cdot \text{(bounded value)} = 0 \] Thus: \[ f(a^-) = 0 \] ### Step 3: Evaluate the right-hand limit \( f(a^+) \) Now we find: \[ f(a^+) = \lim_{x \to a^+} f(x) = \lim_{x \to a^+} |x| \sin\left(\frac{1}{x-a}\right) \] Similar to the left-hand limit: \[ \lim_{x \to a^+} |x| \sin\left(\frac{1}{x-a}\right) = |a| \cdot \lim_{x \to a^+} \sin\left(\frac{1}{x-a}\right) \] Again, since \( \sin\left(\frac{1}{x-a}\right) \) oscillates between -1 and 1: \[ \lim_{x \to a^+} |x| \sin\left(\frac{1}{x-a}\right) = 0 \cdot \text{(bounded value)} = 0 \] Thus: \[ f(a^+) = 0 \] ### Step 4: Check continuity Now we check if: \[ f(a^-) = f(a) = f(a^+) = 0 \] Since all three values are equal to 0, we conclude that the function \( f(x) \) is continuous at \( x = a \). ### Final Conclusion The function \( f(x) \) is continuous at \( x = a \). ---

To determine if the function \( f(x) \) is continuous at \( x = a \), we need to check the following conditions: 1. \( f(a) \) is defined. 2. The left-hand limit \( f(a^-) \) exists. 3. The right-hand limit \( f(a^+) \) exists. 4. \( f(a^-) = f(a) = f(a^+) \). Given the function: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find that the function is continuous or discontinuous at the indicated point f(x) = {{:(|x-a|sin\ (1)/(x-a),if x ne a),(0, if x =a):} at x = a

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0