Home
Class 12
MATHS
f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0...

`f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}` at `x = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to check if the following condition holds: \[ \lim_{x \to 0} f(x) = f(0) \] Given the function: \[ f(x) = \begin{cases} \frac{e^{1/x}}{1 + e^{1/x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 1: Calculate \( f(0) \) From the definition of the function, we have: \[ f(0) = 0 \] ### Step 2: Calculate \( \lim_{x \to 0} f(x) \) For \( x \neq 0 \): \[ f(x) = \frac{e^{1/x}}{1 + e^{1/x}} \] We need to evaluate the limit as \( x \) approaches 0. ### Step 3: Evaluate the limit As \( x \to 0 \), \( \frac{1}{x} \to +\infty \) (since \( x \) is approaching 0 from the right) and \( e^{1/x} \to +\infty \). Thus, we can rewrite the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{1/x}}{1 + e^{1/x}} \] To simplify, we can divide the numerator and the denominator by \( e^{1/x} \): \[ = \lim_{x \to 0} \frac{1}{\frac{1}{e^{1/x}} + 1} \] ### Step 4: Analyze the limit As \( x \to 0 \), \( e^{1/x} \to +\infty \), which implies \( \frac{1}{e^{1/x}} \to 0 \). Therefore, we have: \[ = \frac{1}{0 + 1} = 1 \] ### Step 5: Compare the limit with \( f(0) \) Now we compare the limit with \( f(0) \): \[ \lim_{x \to 0} f(x) = 1 \quad \text{and} \quad f(0) = 0 \] Since: \[ \lim_{x \to 0} f(x) \neq f(0) \] ### Conclusion The function \( f(x) \) is discontinuous at \( x = 0 \).

To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to check if the following condition holds: \[ \lim_{x \to 0} f(x) = f(0) \] Given the function: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

Let f (x)= [{:((x(3e^(1//x)+4))/(2 -e^(1//x)),,,( x ne 0)),(0 ,,, x=0):} x ne (1)/(ln 2) which of the following statement (s) is/are correct ?

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is