Home
Class 12
MATHS
{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3...

`{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):}` at `x = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the piecewise function at \( x = 1 \), we will follow these steps: ### Step 1: Define the function The function \( f(x) \) is given as: \[ f(x) = \begin{cases} \frac{x^2}{2} & \text{if } 0 \leq x \leq 1 \\ 2x^2 - 3x + \frac{3}{2} & \text{if } 1 < x \leq 2 \end{cases} \] ### Step 2: Find the left-hand limit as \( x \) approaches 1 To find the left-hand limit, we compute: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1} \frac{x^2}{2} \] Substituting \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = \frac{1^2}{2} = \frac{1}{2} \] ### Step 3: Find the right-hand limit as \( x \) approaches 1 To find the right-hand limit, we compute: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1} \left( 2x^2 - 3x + \frac{3}{2} \right) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^+} f(x) = 2(1^2) - 3(1) + \frac{3}{2} = 2 - 3 + \frac{3}{2} \] Calculating this: \[ = -1 + \frac{3}{2} = \frac{-2 + 3}{2} = \frac{1}{2} \] ### Step 4: Compare the left-hand and right-hand limits We have: \[ \lim_{x \to 1^-} f(x) = \frac{1}{2} \] \[ \lim_{x \to 1^+} f(x) = \frac{1}{2} \] Since both limits are equal, we conclude: \[ \lim_{x \to 1} f(x) = \frac{1}{2} \] ### Step 5: Check the value of the function at \( x = 1 \) Now, we need to check the value of the function at \( x = 1 \): \[ f(1) = \frac{1^2}{2} = \frac{1}{2} \] ### Step 6: Conclude continuity Since: \[ \lim_{x \to 1} f(x) = f(1) = \frac{1}{2} \] The function \( f(x) \) is continuous at \( x = 1 \). ### Final Answer The function is continuous at \( x = 1 \). ---

To determine the continuity of the piecewise function at \( x = 1 \), we will follow these steps: ### Step 1: Define the function The function \( f(x) \) is given as: \[ f(x) = \begin{cases} \frac{x^2}{2} & \text{if } 0 \leq x \leq 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

The function f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, " for" 1 lt x lt 2 ),( 3x + 4 , "for" x ge2):}is

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)