Home
Class 12
MATHS
If f(x)={(2^(x+2)-16)/(4^x-16),if x!=2k...

If `f(x)={(2^(x+2)-16)/(4^x-16),if x!=2k ,if f(x) is continuous a t x=2, find k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \] is continuous at \( x = 2 \). ### Step 1: Determine the limit of \( f(x) \) as \( x \) approaches 2. To ensure continuity at \( x = 2 \), we need: \[ \lim_{x \to 2} f(x) = f(2) = k \] We will calculate \( \lim_{x \to 2} f(x) \): \[ \lim_{x \to 2} \frac{2^{x+2} - 16}{4^x - 16} \] ### Step 2: Simplify the expression. First, we can rewrite \( 4^x \) as \( (2^2)^x = 2^{2x} \): \[ \lim_{x \to 2} \frac{2^{x+2} - 16}{2^{2x} - 16} \] Now, substituting \( 16 \) as \( 2^4 \): \[ = \lim_{x \to 2} \frac{2^{x+2} - 2^4}{2^{2x} - 2^4} \] ### Step 3: Factor the numerator and denominator. Both the numerator and denominator can be factored using the difference of squares: 1. The numerator \( 2^{x+2} - 2^4 = 2^{x+2} - 16 \) can be factored as: \[ 2^{x+2} - 16 = (2^{x+2} - 4)(2^{x+2} + 4) \] 2. The denominator \( 2^{2x} - 16 = 2^{2x} - 4^2 \) can be factored as: \[ 2^{2x} - 16 = (2^x - 4)(2^x + 4) \] ### Step 4: Substitute \( x = 2 \). Now we can substitute \( x = 2 \) into the limit: \[ = \lim_{x \to 2} \frac{(2^{x+2} - 4)(2^{x+2} + 4)}{(2^x - 4)(2^x + 4)} \] ### Step 5: Evaluate the limit. At \( x = 2 \): - \( 2^{x+2} = 2^4 = 16 \) - \( 2^x = 2^2 = 4 \) So we have: \[ = \frac{(16 - 4)(16 + 4)}{(4 - 4)(4 + 4)} = \frac{(12)(20)}{(0)(8)} \] This indicates that we have a \( 0/0 \) form, so we can apply L'Hôpital's Rule or simplify further. ### Step 6: Cancel common factors. Notice that \( 2^x - 4 \) is a factor in both the numerator and denominator. We can simplify: \[ = \lim_{x \to 2} \frac{(2^{x+2} - 16)}{(2^x - 4)} \cdot \frac{1}{(2^x + 4)} \] ### Step 7: Find the limit. Now we can differentiate the numerator and denominator or substitute values directly after canceling: \[ = \lim_{x \to 2} \frac{(2^{x+2} - 16)}{(2^x - 4)} \cdot \frac{1}{(2^x + 4)} \] After simplification, we find: \[ = \frac{12}{8} = \frac{3}{2} \] ### Step 8: Set the limit equal to \( k \). Thus, we have: \[ k = \frac{3}{2} \] ### Final Answer: The value of \( k \) is \( \frac{3}{2} \). ---

To solve the problem, we need to find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{2^{x+2} - 16}{4^x - 16} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(2^(x+2)-16)/(4^x-16) , if x!=2 , k if x=2 is continuous at x=2 , find k

If f(x)={((2^(x+2)-16)/(4^x-16),x!=2),(k, x=2):} is continuous at x=2 , find k .

If f(x)={(x^2-16)/(x-4), if\ x!=4k\ ,if\ x=4 is continuous at x=4 , find kdot

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k

If f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} , is 'conti nuous' at x = 2 . then find 'k'.

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),(" k","if",x = 2):} is continuous at x = 2.

For what value of k is the function f(x)={(x^2-1)/(x-1),\ \ \ x!=1k ,\ \ \ x=1 continuous at x=1 ?

f(x)={[(x^(2)-3)/(x-2),,x!=2],[k,x=2] is continuous at x=2 then value of k is (a) 8, (b) 2, (c) 6, (d) 12

For what value of k is the function f(x)={(x^2-1)/(x-1), ,x!=1,k,x=1" continuous at"x=1?

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.