Home
Class 12
MATHS
f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),i...

`f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):}` at `x = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit as \( x \) approaches 0 from the negative side equals the right-hand limit as \( x \) approaches 0 from the positive side, and both equal \( f(0) \). ### Step 1: Find \( f(0) \) from the right side For \( 0 \leq x \leq 1 \), the function is defined as: \[ f(x) = \frac{2x + 1}{x - 1} \] Now, substituting \( x = 0 \): \[ f(0) = \frac{2(0) + 1}{0 - 1} = \frac{1}{-1} = -1 \] ### Step 2: Find the left-hand limit as \( x \) approaches 0 For \( -1 \leq x < 0 \), the function is defined as: \[ f(x) = \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} \] We need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} \] ### Step 3: Rationalize the numerator To simplify the limit, we can multiply the numerator and the denominator by the conjugate of the numerator: \[ \lim_{x \to 0^-} \frac{(\sqrt{1 + kx} - \sqrt{1 - kx})(\sqrt{1 + kx} + \sqrt{1 - kx})}{x(\sqrt{1 + kx} + \sqrt{1 - kx})} \] This gives: \[ = \lim_{x \to 0^-} \frac{(1 + kx) - (1 - kx)}{x(\sqrt{1 + kx} + \sqrt{1 - kx})} \] \[ = \lim_{x \to 0^-} \frac{2kx}{x(\sqrt{1 + kx} + \sqrt{1 - kx})} \] \[ = \lim_{x \to 0^-} \frac{2k}{\sqrt{1 + kx} + \sqrt{1 - kx}} \] ### Step 4: Evaluate the limit As \( x \to 0 \), \( \sqrt{1 + kx} \to 1 \) and \( \sqrt{1 - kx} \to 1 \): \[ \lim_{x \to 0^-} f(x) = \frac{2k}{1 + 1} = \frac{2k}{2} = k \] ### Step 5: Set the limits equal for continuity For \( f(x) \) to be continuous at \( x = 0 \): \[ f(0) = \lim_{x \to 0^-} f(x) \] This means: \[ -1 = k \] ### Conclusion Thus, the value of \( k \) that makes the function continuous at \( x = 0 \) is: \[ \boxed{-1} \]

To determine the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit as \( x \) approaches 0 from the negative side equals the right-hand limit as \( x \) approaches 0 from the positive side, and both equal \( f(0) \). ### Step 1: Find \( f(0) \) from the right side For \( 0 \leq x \leq 1 \), the function is defined as: \[ f(x) = \frac{2x + 1}{x - 1} \] Now, substituting \( x = 0 \): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

sin^(-1)(xsqrt(x)),0 le x le 1

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

Show that the function f(x) = {{:(2x+3",",-3 le x lt -2),(x+1",",-2 le x lt 0),(x+2",",0 le x le 1):} is discontinuous at x = 0 and continuous at every point in interval [-3, 1]

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .