Home
Class 12
MATHS
f(x) = {{:((1-coskx)/(x sinx), if x ne 0...

`f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):}` at `x = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{1 - \cos(kx)}{x \sin x} & \text{if } x \neq 0 \\ \frac{1}{2} & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \). ### Step-by-Step Solution: 1. **Understanding Continuity**: For the function to be continuous at \( x = 0 \), we need to satisfy the condition: \[ \lim_{x \to 0} f(x) = f(0) \] Given that \( f(0) = \frac{1}{2} \), we need to find \( \lim_{x \to 0} f(x) \). 2. **Finding the Limit**: We need to calculate: \[ \lim_{x \to 0} \frac{1 - \cos(kx)}{x \sin x} \] 3. **Using the Cosine Identity**: We know that: \[ 1 - \cos(kx) = 2 \sin^2\left(\frac{kx}{2}\right) \] Thus, we can rewrite the limit: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{kx}{2}\right)}{x \sin x} \] 4. **Separating the Limits**: We can separate the limit as follows: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{kx}{2}\right)}{x^2} \cdot \frac{x^2}{x \sin x} \] 5. **Applying the Limit**: We know: \[ \lim_{x \to 0} \frac{\sin(kx/2)}{kx/2} = 1 \] Therefore: \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{kx}{2}\right)}{(kx/2)^2} = 1 \] Thus, we have: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{kx}{2}\right)}{x^2} = 2 \cdot \frac{k^2}{4} = \frac{k^2}{2} \] 6. **Finding the Limit of the Denominator**: We also know: \[ \lim_{x \to 0} \frac{x}{\sin x} = 1 \] Therefore: \[ \lim_{x \to 0} \frac{x^2}{x \sin x} = \lim_{x \to 0} \frac{x}{\sin x} = 1 \] 7. **Combining the Results**: Now, we can combine the limits: \[ \lim_{x \to 0} f(x) = \frac{k^2}{2} \cdot 1 = \frac{k^2}{2} \] 8. **Setting the Limits Equal**: Since we need \( \lim_{x \to 0} f(x) = f(0) \): \[ \frac{k^2}{2} = \frac{1}{2} \] 9. **Solving for \( k \)**: Multiply both sides by 2: \[ k^2 = 1 \] Taking the square root: \[ k = \pm 1 \] ### Final Answer: The values of \( k \) that make the function continuous at \( x = 0 \) are: \[ k = 1 \quad \text{or} \quad k = -1 \]

To solve the problem, we need to find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{1 - \cos(kx)}{x \sin x} & \text{if } x \neq 0 \\ \frac{1}{2} & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

For what values of k , f(x)={:{((1-coskx)/(xsinx)," if " x ne 0),(1/2," if " x =0):} is continuous at x = 0 ?

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k