Home
Class 12
MATHS
Prove that the function f defined by f(x...

Prove that the function f defined by `f(x) = {{:((x)/(|x|+2x^(2)), if x ne 0),(k, if x = 0):}` remains discontinuous at `x = 0`, regardings the choice iof k.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the function \( f \) defined by \[ f(x) = \begin{cases} \frac{x}{|x| + 2x^2} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] remains discontinuous at \( x = 0 \) regardless of the choice of \( k \), we will evaluate the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches 0. ### Step 1: Find the Left-Hand Limit (LHL) We need to calculate the limit of \( f(x) \) as \( x \) approaches 0 from the left (i.e., \( x \to 0^- \)). For \( x < 0 \), we have: \[ f(x) = \frac{x}{|x| + 2x^2} = \frac{x}{-x + 2x^2} = \frac{x}{-x + 2x^2} = \frac{x}{-x(1 - 2x)} = \frac{1}{-1 + 2x} \] Now, we take the limit as \( x \) approaches 0 from the left: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{-1 + 2x} = \frac{1}{-1 + 0} = -1 \] ### Step 2: Find the Right-Hand Limit (RHL) Now, we calculate the limit of \( f(x) \) as \( x \) approaches 0 from the right (i.e., \( x \to 0^+ \)). For \( x > 0 \), we have: \[ f(x) = \frac{x}{|x| + 2x^2} = \frac{x}{x + 2x^2} = \frac{x}{x(1 + 2x)} = \frac{1}{1 + 2x} \] Now, we take the limit as \( x \) approaches 0 from the right: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{1 + 2x} = \frac{1}{1 + 0} = 1 \] ### Step 3: Compare the Limits and the Function Value at \( x = 0 \) We found: - Left-hand limit: \( \lim_{x \to 0^-} f(x) = -1 \) - Right-hand limit: \( \lim_{x \to 0^+} f(x) = 1 \) Since the left-hand limit does not equal the right-hand limit: \[ \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x) \] ### Conclusion Since the left-hand limit and right-hand limit are not equal, we conclude that \( f(x) \) is discontinuous at \( x = 0 \) regardless of the value of \( k \).

To prove that the function \( f \) defined by \[ f(x) = \begin{cases} \frac{x}{|x| + 2x^2} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Show that the function f given by f(x) ={{:( x^(2)+5, if x ne 0), (3, if x = 0):} is not continuous at x=0

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If function f:ZtoZ is defined by f(x)={{:((x)/(2), "if x is even"),(0," if x is odd"):} , then f is

Prove that the function f(x)={x/(|x|+2x^2),\ \ \ x!=0k ,\ \ \ x=0 remains discontinuous at x=0 , regardless the choice of k .

Prove that the function f(x)={x/(|x|+2x^2),x!=0 and k ,x=0 remains discontinuous at x=0 , regardless the choice of k

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" "0", " x=0):} is not differentiable

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,