Home
Class 12
MATHS
Find all point of discountinuity of t...

Find all point of discountinuity of the function `f(t) = (1)/(t^(2)+t-2)`, where `t = (1)/(x-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find all points of discontinuity of the function \( f(t) = \frac{1}{t^2 + t - 2} \) where \( t = \frac{1}{x - 1} \), we will follow these steps: ### Step 1: Identify the function and its expression in terms of \( x \) Given: \[ f(t) = \frac{1}{t^2 + t - 2} \] and \[ t = \frac{1}{x - 1} \] ### Step 2: Substitute \( t \) into the function Substituting \( t \) into the function gives: \[ f\left(\frac{1}{x - 1}\right) = \frac{1}{\left(\frac{1}{x - 1}\right)^2 + \left(\frac{1}{x - 1}\right) - 2} \] ### Step 3: Simplify the expression Calculating \( \left(\frac{1}{x - 1}\right)^2 \): \[ \left(\frac{1}{x - 1}\right)^2 = \frac{1}{(x - 1)^2} \] Thus, we have: \[ f\left(\frac{1}{x - 1}\right) = \frac{1}{\frac{1}{(x - 1)^2} + \frac{1}{x - 1} - 2} \] Finding a common denominator for the terms in the denominator: \[ = \frac{1}{\frac{1 + (x - 1) - 2(x - 1)^2}{(x - 1)^2}} \] This simplifies to: \[ = \frac{(x - 1)^2}{1 + (x - 1) - 2(x - 1)^2} \] ### Step 4: Further simplify the denominator The denominator simplifies to: \[ 1 + x - 1 - 2(x^2 - 2x + 1) = 1 + x - 1 - 2x^2 + 4x - 2 = -2x^2 + 5x - 2 \] Thus: \[ f\left(\frac{1}{x - 1}\right) = \frac{(x - 1)^2}{-2x^2 + 5x - 2} \] ### Step 5: Determine points of discontinuity The function \( f(t) \) will be discontinuous when the denominator is equal to zero: \[ -2x^2 + 5x - 2 = 0 \] We can factor or use the quadratic formula to find the roots: \[ 2x^2 - 5x + 2 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} = \frac{5 \pm \sqrt{25 - 16}}{4} = \frac{5 \pm 3}{4} \] Thus, the solutions are: \[ x = \frac{8}{4} = 2 \quad \text{and} \quad x = \frac{2}{4} = \frac{1}{2} \] ### Step 7: Check for additional points of discontinuity Since \( t = \frac{1}{x - 1} \), we also need to check when \( x - 1 = 0 \): \[ x = 1 \] ### Final Points of Discontinuity The points of discontinuity are: \[ x = \frac{1}{2}, \quad x = 2, \quad \text{and} \quad x = 1 \] ### Conclusion Thus, the function \( f(t) \) is discontinuous at \( x = \frac{1}{2}, x = 1, \) and \( x = 2 \). ---

To find all points of discontinuity of the function \( f(t) = \frac{1}{t^2 + t - 2} \) where \( t = \frac{1}{x - 1} \), we will follow these steps: ### Step 1: Identify the function and its expression in terms of \( x \) Given: \[ f(t) = \frac{1}{t^2 + t - 2} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find all point of discontinuity of the function f(t)=1/(t^2+t-2), where t=1/(x-1)

Find all point of discontinuity of the function f(t)=1/(t^2+t-2), where t=1/(x-1)

If the function f(x) = 1/(x+2) , then find the points of discountinuity of the composite function y = f{f(x)} .

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be definded as : F(x)=int_(1)^(x)t^2 g(t)dt, where g(t) = int_(1)^(t)f(u)du. Then for the function F, the point x=1 is

Find the locus of a point whose coordinate are given by x = t+t^(2), y = 2t+1 , where t is variable.

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

Find the interval of increase or decrease of the f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt