Home
Class 12
MATHS
Examine the differentiability of f, ...

Examine the differentiability of f, where f is defined by
`f(x) = {{:(x[x],if0lexlt2),((x-1)x,if2lexlt3):}` at `x = 2`

Text Solution

AI Generated Solution

The correct Answer is:
To examine the differentiability of the function \( f \) defined as: \[ f(x) = \begin{cases} x \lfloor x \rfloor & \text{if } 0 \leq x < 2 \\ (x - 1)x & \text{if } 2 \leq x < 3 \end{cases} \] at \( x = 2 \), we need to find the left-hand derivative (LHD) and the right-hand derivative (RHD) at that point. ### Step 1: Calculate the Left-Hand Derivative (LHD) at \( x = 2 \) The left-hand derivative at \( x = 2 \) is given by: \[ f'_{-}(2) = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{(2 - h) - 2} \] For \( 2 - h < 2 \), we use the first case of the function: \[ f(2 - h) = (2 - h) \lfloor 2 - h \rfloor = (2 - h) \cdot 1 = 2 - h \] Now, we need to find \( f(2) \): \[ f(2) = (2 - 1) \cdot 2 = 1 \cdot 2 = 2 \] Substituting these into the LHD formula: \[ f'_{-}(2) = \lim_{h \to 0} \frac{(2 - h) - 2}{(2 - h) - 2} = \lim_{h \to 0} \frac{-h}{-h} = \lim_{h \to 0} 1 = 1 \] ### Step 2: Calculate the Right-Hand Derivative (RHD) at \( x = 2 \) The right-hand derivative at \( x = 2 \) is given by: \[ f'_{+}(2) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{(2 + h) - 2} \] For \( 2 + h \geq 2 \), we use the second case of the function: \[ f(2 + h) = (2 + h - 1)(2 + h) = (1 + h)(2 + h) = 2 + 3h + h^2 \] Now substituting into the RHD formula: \[ f'_{+}(2) = \lim_{h \to 0} \frac{(2 + 3h + h^2) - 2}{(2 + h) - 2} = \lim_{h \to 0} \frac{3h + h^2}{h} = \lim_{h \to 0} (3 + h) = 3 \] ### Step 3: Compare LHD and RHD We found: \[ f'_{-}(2) = 1 \quad \text{and} \quad f'_{+}(2) = 3 \] Since \( f'_{-}(2) \neq f'_{+}(2) \), the function \( f \) is not differentiable at \( x = 2 \). ### Conclusion Thus, we conclude that the function \( f \) is not differentiable at \( x = 2 \). ---

To examine the differentiability of the function \( f \) defined as: \[ f(x) = \begin{cases} x \lfloor x \rfloor & \text{if } 0 \leq x < 2 \\ (x - 1)x & \text{if } 2 \leq x < 3 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Examine the differentiability of f, where f is defined by f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 .

The function f defined f(x){(x[x],0lexle2),((x-1)x,2lexlt3):} , Then Lf'(2) =

Find all points of discontinuity of f, where f is defined by f(x)={{:(x^3-3, ifxlt=2),(x^2+1, ifx<2):}

Find all points of discontinuity of f, where f is defined by f(x)={{:(2x+3, ifxlt=2), (2x-3, ifx >2):}

Discuss the continuity of the function f, where f is defined by f(x)={{:(-2, ifxlt=-1),( 2x , if-1 1):}

Examine the differentiability of the function f defined by f(x)={2x+3, if -3 <= x< -2, x+1, if -2<=x<0, x+2, if 0<=x<=1

Evaluate the left- and right-hand limits of the function defined f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that lim_(xto1) f(x) does not exist.

If f: R ->R is defined by f(x) = x^2- 3x + 2 , find f(f(x)) .

If f:R to R is defined by f(x) = x^(2)-3x+2, write f{f(x)} .