Home
Class 12
MATHS
f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):...

`f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):}` at `x = 2`. Examine the differentiability

Text Solution

AI Generated Solution

The correct Answer is:
To examine the differentiability of the function \( f(x) \) at \( x = 2 \), we will follow these steps: ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} 1 + x & \text{if } x \leq 2 \\ 5 - x & \text{if } x > 2 \end{cases} \] ### Step 2: Find the left-hand derivative at \( x = 2 \) The left-hand derivative is calculated using the limit: \[ f'(2^-) = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{-h} \] Since \( 2 - h \leq 2 \) for small \( h \), we use the first case of the function: \[ f(2 - h) = 1 + (2 - h) = 3 - h \] Now substituting into the limit: \[ f'(2^-) = \lim_{h \to 0} \frac{(3 - h) - 3}{-h} = \lim_{h \to 0} \frac{-h}{-h} = \lim_{h \to 0} 1 = 1 \] ### Step 3: Find the right-hand derivative at \( x = 2 \) The right-hand derivative is calculated using the limit: \[ f'(2^+) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} \] Since \( 2 + h > 2 \) for small \( h \), we use the second case of the function: \[ f(2 + h) = 5 - (2 + h) = 3 - h \] Now substituting into the limit: \[ f'(2^+) = \lim_{h \to 0} \frac{(3 - h) - 3}{h} = \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} -1 = -1 \] ### Step 4: Compare the left-hand and right-hand derivatives We find: \[ f'(2^-) = 1 \quad \text{and} \quad f'(2^+) = -1 \] Since \( f'(2^-) \neq f'(2^+) \), the left-hand derivative is not equal to the right-hand derivative. ### Conclusion Since the left-hand derivative and right-hand derivative at \( x = 2 \) are not equal, we conclude that the function \( f(x) \) is **not differentiable** at \( x = 2 \). ---

To examine the differentiability of the function \( f(x) \) at \( x = 2 \), we will follow these steps: ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} 1 + x & \text{if } x \leq 2 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

Show that the function f(x)={:{(1+x ", " x le2","),(5-x", "x gt2):} is not differentiable at x=2

Show that the function f(x)={{:(,x^2,x le 1),(,1/x,x gt 1):} continuous at x=1 but not differentiable.

Examine the differentiability of f, where f is defined by f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 .

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

f(x){{:(x^(3) - 1"," if x le 1 ),(x^(2) "," if x gt 1 ):}

If f(x)={{:(,|x|, x le1),(,2-x,x gt 1):} , then fof (x) is equal to