Home
Class 12
MATHS
Differentiate log(x+sqrt(x^(2)+a))...

Differentiate `log(x+sqrt(x^(2)+a))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \log(x + \sqrt{x^2 + a}) \), we will follow these steps: ### Step 1: Differentiate the function We start by differentiating both sides with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \log(x + \sqrt{x^2 + a}) \right) \] ### Step 2: Apply the chain rule Using the chain rule for the logarithmic function, we have: \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + a}} \cdot \frac{d}{dx} (x + \sqrt{x^2 + a}) \] ### Step 3: Differentiate the inner function Now we differentiate the inner function \( x + \sqrt{x^2 + a} \): \[ \frac{d}{dx} (x + \sqrt{x^2 + a}) = \frac{d}{dx} x + \frac{d}{dx} \sqrt{x^2 + a} \] The derivative of \( x \) is \( 1 \) and for \( \sqrt{x^2 + a} \), we use the chain rule: \[ \frac{d}{dx} \sqrt{x^2 + a} = \frac{1}{2\sqrt{x^2 + a}} \cdot \frac{d}{dx} (x^2 + a) = \frac{1}{2\sqrt{x^2 + a}} \cdot 2x = \frac{x}{\sqrt{x^2 + a}} \] ### Step 4: Combine the derivatives Now substituting back, we have: \[ \frac{d}{dx} (x + \sqrt{x^2 + a}) = 1 + \frac{x}{\sqrt{x^2 + a}} \] ### Step 5: Substitute back into the derivative Now substituting this result back into our derivative expression: \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + a}} \left( 1 + \frac{x}{\sqrt{x^2 + a}} \right) \] ### Step 6: Simplify the expression We can simplify this expression: \[ \frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 + a}}}{x + \sqrt{x^2 + a}} = \frac{\sqrt{x^2 + a} + x}{(x + \sqrt{x^2 + a}) \sqrt{x^2 + a}} \] ### Step 7: Final simplification Notice that \( \sqrt{x^2 + a} + x = x + \sqrt{x^2 + a} \), so we can simplify further: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 + a}} \] ### Final Answer Thus, the derivative of the function \( y = \log(x + \sqrt{x^2 + a}) \) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 + a}} \] ---

To differentiate the function \( y = \log(x + \sqrt{x^2 + a}) \), we will follow these steps: ### Step 1: Differentiate the function We start by differentiating both sides with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \log(x + \sqrt{x^2 + a}) \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate log(x+sqrt(x^2+1)) with respect to x :

Differentiate log(x+sqrt(a^2+x^2)) with respect to x :

Differentiate log(x+sqrt(a^2+x^2)) with respect to x .

Differentiate log{x+2+sqrt(x^2+4x+1)} with respect to x :

Differentiate 1/(x+ sqrt(1+x^2)) with respect to 'x'.

differentiate: log(logx)

Differentiate cos^(-1){x/(sqrt(x^2+a^2))} with respect to x

Differentiate sin^(-1){x/(sqrt(x^2+a^2))} with respect to x

Differentiate log[log(logx^(5))]

Differentiate log sin x w.r.t. sqrt(x).