Home
Class 12
MATHS
sin^(n)(ax^(2)+bx+c)...

`sin^(n)(ax^(2)+bx+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \sin^n(ax^2 + bx + c) \), we will use the chain rule and the power rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = \sin^n(ax^2 + bx + c) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we apply the chain rule. The derivative of \( \sin^n(u) \) where \( u = ax^2 + bx + c \) is given by: \[ \frac{dy}{dx} = n \sin^{n-1}(u) \cdot \frac{d}{dx}[\sin(u)] \] ### Step 3: Differentiate \( \sin(u) \) The derivative of \( \sin(u) \) is \( \cos(u) \cdot \frac{du}{dx} \). Therefore, we have: \[ \frac{dy}{dx} = n \sin^{n-1}(u) \cdot \cos(u) \cdot \frac{du}{dx} \] ### Step 4: Find \( \frac{du}{dx} \) Now we need to differentiate \( u = ax^2 + bx + c \): \[ \frac{du}{dx} = \frac{d}{dx}(ax^2 + bx + c) = 2ax + b \] ### Step 5: Substitute back into the derivative Now, substituting \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = n \sin^{n-1}(ax^2 + bx + c) \cdot \cos(ax^2 + bx + c) \cdot (2ax + b) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = n \sin^{n-1}(ax^2 + bx + c) \cdot \cos(ax^2 + bx + c) \cdot (2ax + b) \]

To find the derivative \( \frac{dy}{dx} \) of the function \( y = \sin^n(ax^2 + bx + c) \), we will use the chain rule and the power rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = \sin^n(ax^2 + bx + c) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Let a, b, c be non zero numbers such that int_(0)^(3)sqrt(x^(2)+x+1)(ax^(2)+bx+c)dx=int_(0)^(5)sqrt(1+x^(2)+x)(ax^(2)+bx+c)dx . Then the quadratic equation ax^(2)+bx+c=0 has

If x_(1) and x_(2) are the real and distinct roots of ax^(2)+bx+c=0 then prove that lim_(xtox1) (1+sin(ax^(2)+bx+c))^((1)/(x-x_(1)))=e^(a(x_(1)-x_(2))).

Evaluate int_(1)^(4) (ax^(2)+bx+c)dx .

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 . Then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) equal to

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If the equations ax^(2) +2bx +c = 0 and Ax^(2) +2Bx+C=0 have a common root and a,b,c are in G.P prove that a/A , b/B, c/C are in H.P

Maximum number of real solution for the equation ax^(n)+x^(2)+bx+c=0,"where "a,b,c in R and n is an even positive number, is

Which of the following statements are correct E_(1) ) If a + b + c = 0 then 1 is a root of ax^(2) + bx + c = 0 . E_(2) ) If sin alpha, cos alpha are the roots of the equation ax^(2) + bx + c = 0 then b^(2)-a^(2) =2ac

The value of int_(-2)^(2) (ax^(3)+bx+c)dx depends on