Home
Class 12
MATHS
Differentiate cos(tansqrt(x+1))...

Differentiate `cos(tansqrt(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos(\tan(\sqrt{x+1})) \), we will apply the chain rule of differentiation step by step. ### Step 1: Identify the outer and inner functions Let: - \( u = \tan(\sqrt{x+1}) \) - \( y = \cos(u) \) ### Step 2: Differentiate the outer function Using the chain rule, we differentiate \( y \) with respect to \( u \): \[ \frac{dy}{du} = -\sin(u) \] ### Step 3: Differentiate the inner function Next, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = \sec^2(\sqrt{x+1}) \cdot \frac{d}{dx}(\sqrt{x+1}) \] ### Step 4: Differentiate \( \sqrt{x+1} \) Now we differentiate \( \sqrt{x+1} \): \[ \frac{d}{dx}(\sqrt{x+1}) = \frac{1}{2\sqrt{x+1}} \] ### Step 5: Combine the derivatives Now we can substitute back into our expression for \( \frac{du}{dx} \): \[ \frac{du}{dx} = \sec^2(\sqrt{x+1}) \cdot \frac{1}{2\sqrt{x+1}} \] ### Step 6: Apply the chain rule Now we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\sin(\tan(\sqrt{x+1})) \cdot \left(\sec^2(\sqrt{x+1}) \cdot \frac{1}{2\sqrt{x+1}}\right) \] ### Final Result Thus, the derivative of \( y = \cos(\tan(\sqrt{x+1})) \) is: \[ \frac{dy}{dx} = -\frac{\sin(\tan(\sqrt{x+1})) \cdot \sec^2(\sqrt{x+1})}{2\sqrt{x+1}} \]

To differentiate the function \( y = \cos(\tan(\sqrt{x+1})) \), we will apply the chain rule of differentiation step by step. ### Step 1: Identify the outer and inner functions Let: - \( u = \tan(\sqrt{x+1}) \) - \( y = \cos(u) \) ### Step 2: Differentiate the outer function ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiation of cos (sqrt(x)) with respect to x is

Differentiate: e^(cos^(-1)sqrt(1-x^(2))

Differentiate tan^-1sqrt((1-x^2)/(1+x^2)) with respect to cos^-1""x^2

Differentiate cos^(-1){x/(sqrt(x^2+a^2))} with respect to x

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

Differentiate cos^(-1){2xsqrt(1-x^2)},1/(sqrt(2))

Differentiate sin^(-1)sqrt(1-x^2) with respect to cos^(-1)x , if x∈ [-1,0]

Differentiate sinsqrt(x) + cos^(2)sqrt(x)

Differentiate sinsqrt(x) + cos^(2)sqrt(x)

Differentiate sin^(-1)sqrt(1-x^2) with respect to cos^(-1)x ,