Home
Class 12
MATHS
Differentiate sinx^(2)+sin^(2)x+sin^(2)(...

Differentiate `sinx^(2)+sin^(2)x+sin^(2)(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \), we will apply the chain rule and the product rule of differentiation step by step. ### Step-by-step Solution: 1. **Identify the function**: \[ y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \] 2. **Differentiate each term**: We will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\sin(x^2)] + \frac{d}{dx}[\sin^2(x)] + \frac{d}{dx}[\sin^2(x^2)] \] 3. **Differentiate \( \sin(x^2) \)**: Using the chain rule: \[ \frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot \frac{d}{dx}[x^2] = \cos(x^2) \cdot 2x \] 4. **Differentiate \( \sin^2(x) \)**: Using the chain rule: \[ \frac{d}{dx}[\sin^2(x)] = 2\sin(x) \cdot \frac{d}{dx}[\sin(x)] = 2\sin(x) \cdot \cos(x) \] 5. **Differentiate \( \sin^2(x^2) \)**: Using the chain rule: \[ \frac{d}{dx}[\sin^2(x^2)] = 2\sin(x^2) \cdot \frac{d}{dx}[\sin(x^2)] = 2\sin(x^2) \cdot \cos(x^2) \cdot \frac{d}{dx}[x^2] = 2\sin(x^2) \cdot \cos(x^2) \cdot 2x \] 6. **Combine all derivatives**: Now we can combine all the derivatives we calculated: \[ \frac{dy}{dx} = 2x\cos(x^2) + 2\sin(x)\cos(x) + 4x\sin(x^2)\cos(x^2) \] 7. **Final expression**: Thus, the derivative of the function is: \[ \frac{dy}{dx} = 2x\cos(x^2) + 2\sin(x)\cos(x) + 4x\sin(x^2)\cos(x^2) \]

To differentiate the function \( y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \), we will apply the chain rule and the product rule of differentiation step by step. ### Step-by-step Solution: 1. **Identify the function**: \[ y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x (sinx)^(x) +sin(x^(x))

Differentiate sin^(-1)((2x)/(1+x^2))

Differentiate wrt x : x^(2)*e^(x)*sinx

Differentiate 2x^2 + 4 sinx w.r.t x

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Differentiate sin^(-1){(sinx+cosx)/(sqrt(2))},\ -(3pi)/4

Differentiate x^(sinx - cosx)+(x^2-1)/(x^2+1) with respect to x .

Differentiate: sinx^(2) with respect to x^(3) .

Differentiate (x)/(sinx) w.r.t . sinx .

Differentiate wrt x : (x^(2)sinx- e^(x)"log"x)