Home
Class 12
MATHS
Differentiate sin^(-1)'(1)/(sqrt(x+1))...

Differentiate `sin^(-1)'(1)/(sqrt(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \), we will follow these steps: ### Step 1: Differentiate the Inverse Sine Function First, we need to differentiate \( y \) with respect to \( x \). The derivative of \( \sin^{-1}(u) \) is given by the formula: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1}{\sqrt{x+1}} \). ### Step 2: Find \( u \) and its Derivative Now, we need to find \( \frac{du}{dx} \): \[ u = \frac{1}{\sqrt{x+1}} \implies u = (x+1)^{-1/2} \] Using the power rule for differentiation: \[ \frac{du}{dx} = -\frac{1}{2}(x+1)^{-3/2} \cdot \frac{d}{dx}(x+1) = -\frac{1}{2}(x+1)^{-3/2} \] ### Step 3: Substitute \( u \) into the Derivative Formula Next, we substitute \( u \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{1}{\sqrt{x+1}}\right)^2}} \cdot \left(-\frac{1}{2}(x+1)^{-3/2}\right) \] ### Step 4: Simplify the Expression Now, simplify \( \sqrt{1 - \left(\frac{1}{\sqrt{x+1}}\right)^2} \): \[ 1 - \left(\frac{1}{\sqrt{x+1}}\right)^2 = 1 - \frac{1}{x+1} = \frac{(x+1) - 1}{x+1} = \frac{x}{x+1} \] Thus, \[ \sqrt{1 - \left(\frac{1}{\sqrt{x+1}}\right)^2} = \sqrt{\frac{x}{x+1}} = \frac{\sqrt{x}}{\sqrt{x+1}} \] ### Step 5: Substitute Back into the Derivative Now substitute this back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\frac{\sqrt{x}}{\sqrt{x+1}}} \cdot \left(-\frac{1}{2}(x+1)^{-3/2}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\sqrt{x+1}}{2\sqrt{x}} \cdot (x+1)^{-3/2} \] ### Step 6: Final Simplification Finally, we simplify: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}(x+1)} \] ### Final Answer Thus, the derivative of \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}(x+1)} \]

To differentiate the function \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \), we will follow these steps: ### Step 1: Differentiate the Inverse Sine Function First, we need to differentiate \( y \) with respect to \( x \). The derivative of \( \sin^{-1}(u) \) is given by the formula: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1}{\sqrt{x+1}} \). ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(1/(sqrt(1+x^2))) with respect to x

Differentiate sin ^(-1) (1/sqrt(1+x^2)) with respect to 'x'

Differentiate sin^(-1){x/(sqrt(x^2+a^2))} with respect to x

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Differentiate sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0

Differentiate sin^(-1)[(sqrt(1+x)+sqrt(1-x))/2] with respect to 'x'.

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x if 1/(sqrt(2)) < x < 1

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if 1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))