Home
Class 12
MATHS
(x+1)^(2)(x+2)^(3)(x+3)^(4)...

`(x+1)^(2)(x+2)^(3)(x+3)^(4)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let ` y = (x+1)^(2)(x+2)^(3)(x+3)^(4)`
`:. logy = log{(x+1)^(2).(x+2)^(3)(x+3)^(4)}`
`= log (x+1)^(2)+log(x+2)^(3)+log(x+3)^(4)`
and `(d)/(dy)logy.(dy)/(dx)= (dy)/(dx)=(d)/(dx)[2log(x+1)]+(d)/(dx)[3log(x+2)]+(d)/(dx)[4log(logx)=1/x]`
`1/y.(dy)/(dx) = (2)/((x+1)).(d)/(dx)(x+1)+3.(1)/((x+2)).(d)/(dx)(x+2)+4.(1)/((x+3)).(d)/(dx)(x+3)[:'(d)/(dx)(logx)=1/x]`
`=[(2)/(x+1)+(3)/(x+2)+(4)/(x+3)]`
`:. (dy)/(dx) = y [(2)/((x+1))+(3)/((x+2))+(4)/((x+3))]`
`= (x+1)^(2).(x+2)^(3).(x+3)^(4)[(2)/((x+1))+(3)/((x+2))+(4)/((x+3))]`
` = (x+1)^(2).(x+2)^(3).(x+3)^(4)`
`[(2(x+2)(x+3)+3(x+1)(x+3)+4(x+1)(x+2))/((x+1)(x+2)(x+3))]`
`= ((x+1)^(2)(x+2)^(3)(x+3)^(4))/((x+1)(x+2)(x+3))`
`[2(x^(2)+5x+6)+3(x^(2)+4x+3)+4(x^(2)+3x+2)]`
`= (x+1)(x+2)^(2)(x+3)^(3)`
`[2x^(2)+10x+12+13x^(2)+12+9+4x^(2)+12x+8]`
`=(x+1)(x+2)^(2)(x+3)^(3)[9x^(2)+34x+29]`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3)(x-4)^(4)…(x+49)^(49)(x-50)^(50) is

Consider the system of equations x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5)=5 and x_1+2x_2+3x_3+4x_4+5x_5=15 where x_1,x_2,x_3,x_4,x_5 are positive real numbers. Then numbers of (x_1,x_2,x_3,x_4,x_5) is ___________.

Sovle x(x+2)^2(x-1)^5 (2x-3)(x-3)^4 ge 0

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

If |x|lt1 and y=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+... , then x =

Coefficient of x^((n^2+n-14)/2) in, (x-1)(x^2-2)(x^3-3)(x^4- 4).........(x^n-n),(n>=8) is

Find (x)/(1.2)+(x^(2))/(2.3)+(x^(3))/(3.4)+....=