Home
Class 12
MATHS
The derivative of cos^(-1)((sinx+cosx)/(...

The derivative of `cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4)`, w.r.t.x is

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `y = cos^(-1)((sinx+cosx)/(sqrt(2)))`
` :. (dy)/(dx)=d/dx cos^(-1)((sinx+cosx)/(sqrt(2)))`
`= (-1)/(sqrt(1-((sinx+cosx)/sqrt(2))^(2))).(d)/(dx)((sinx+cosx)/(sqrt(2)))`
`[:' (d)/(dx)(cosx)= -(1)/(sqrt(1-x^(2)))]`
`= (1)/(sqrt(4-(sin^(2)x+cos^(2)x+2sinx.cosx)/(2))).(1)/(sqrt(2))(cosx-sinx)`
` =(-1.sqrt(2))/(sqrt(1-sin2x)).(1)/(sqrt(2))(cosx-sinx)`
` [:'1-sin2x=(cosxsinx)^(2)=cos^(2)x+sin^(2)x-2sinxcosx]`
`= (-1(cosx-sinx))/((cosx-sinx)) = - 1`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

simplify cos^(-1) ((sinx+cosx)/sqrt2) , pi/4 < x < (5pi )/4

Differentiate sin^(-1){(sinx+cosx)/(sqrt(2))},\ -(3pi)/4

Differentiate the following function with respect to x : sin^(-1){(sinx+cosx)/(sqrt(2))} , -(3pi)/4 lt xlt pi/4

Find the derivative of x^(2) sinx w.r.t.x.

The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)) , with respect to (x)/(2) , where x in(0,(pi)/(2)) is:

Differentiate cos^(-1){(cosx+sinx)/(sqrt(2))},\ -pi/4

Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/(sqrt(2))},-pi/4ltxltpi/ 4

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2))),\ pi/4 < x < (5pi)/4 (ii) cos^(-1)((sinx+cosx)/(sqrt(2))), (5pi)/4 < x < (9pi)/4

The derivative of f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+{sin^(-1)((1)/(sqrt3)(2cosx+3sinx))} w.r.t. sqrt(1+x^(2)) at x=(1)/(sqrt3) is.........

Express tan^(-1)((cosx)/(1-sinx)) , -(pi)/2ltxlt(pi)/2 in the simplest form.